

1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.2.7

1.2.8

1.2.9

1.2.10

1.2.11

1.2.12

1.3

1.3.1

1.3.2

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.4.6

1.4.7

1.4.8

1.4.9

1.4.10

1.5

1.5.1

Table	of	Contents
introduction

Introduction

History

Overview

Getting	radare2

Compilation	and	Portability

Compilation	on	Windows

Command-line	Flags

Basic	Usage

Command	Format

Expressions

Rax2

Basic	Debugger	Session

Contributing	to	radare2

Configuration

Colors

Common	Configuration	Variables

Basic	Commands

Seeking

Block	Size

Sections

Mapping	Files

Print	Modes

Flags

Write

Zoom

Yank/Paste

Comparing	Bytes

Visual	mode

Visual	Disassembly

2

1.6

1.6.1

1.6.2

1.6.3

1.6.4

1.6.5

1.6.6

1.6.7

1.7

1.7.1

1.7.2

1.8

1.8.1

1.8.2

1.8.3

1.9

1.9.1

1.9.2

1.9.3

1.9.4

1.9.5

1.9.6

1.9.7

1.10

1.10.1

1.11

1.11.1

1.11.2

1.12

1.13

1.13.1

1.14

1.14.1

1.15

Searching	bytes

Basic	Searches

Configurating	the	Search

Pattern	Search

Automation

Backward	Search

Search	in	Assembly

Searching	for	AES	Keys

Disassembling

Adding	Metadata

ESIL

Scripting

Loops

Macros

R2pipe

Rabin2

File	Identification

Entrypoint

Imports

Symbols	(exports)

Libraries

Strings

Program	Sections

Radiff2

Binary	Diffing

Rasm2

Assemble

Disassemble

Ragg2

Analysis

Code	Analysis

Rahash2

Rahash	Tool

Debugger

3

1.15.1

1.15.2

1.16

1.16.1

1.17

1.17.1

1.18

1.18.1

1.18.1.1

1.18.1.2

1.18.2

1.18.2.1

1.18.2.1.1

1.18.2.1.2

1.18.2.1.3

1.18.2.1.4

1.18.2.1.5

1.18.2.1.6

1.18.2.1.7

1.18.2.1.8

1.19

Getting	Started

Registers

Remote	Access	Capabilities

Remoting	Capabilities

Plugins

Plugins

Crackmes

IOLI

IOLI	0x00

IOLI	0x01

Avatao

R3v3rs3	4

.intro

.radare2

.first_steps

.main

.vmloop

.instructionset

.bytecode

.outro

Reference	Card

4

R2	"Book"

Welcome	to	the	Radare2	Book
Webpage:	https://www.gitbook.com/book/radare/radare2book/details

Online:	http://radare.gitbooks.io/radare2book/content/
PDF:	https://www.gitbook.com/download/pdf/book/radare/radare2book
Epub:	https://www.gitbook.com/download/epub/book/radare/radare2book
Mobi:	https://www.gitbook.com/download/mobi/book/radare/radare2book

Authors	&	Contributors

The	radare2	book

Rework	by	maijin	on	the	original	radare	book

Contributors:

Anton	Kochkov
aoighost
Austin	Hartzheim
David	Tomaschik
DZ_ruyk
Grigory	Rechistov
hdznrrd
Jeffrey	Crowell
John
Judge	Dredd
jvoisin
Kevin	Grandemange
muzlightbeer
Peter	C
sghctoma
SkUaTeR
TDKPS
Thanat0s

introduction

5

https://www.gitbook.com/book/radare/radare2book/details
http://radare.gitbooks.io/radare2book/content/
https://www.gitbook.com/download/pdf/book/radare/radare2book
https://www.gitbook.com/download/epub/book/radare/radare2book
https://www.gitbook.com/download/mobi/book/radare/radare2book

The	original	radare	book

Original	author	and	greetings	from	The	radare	book	:	pancake

God.	aka	Flying	Spaghetti	Monster
Nibble	(ELF32/64	and	PE	parser+lot	of	bugfixes	and	core	work)
ora8	(w32	port	debugger,	syscallproxying,	hw	breakpoints..)
nopcode	guys	(for	the	cons	and
Sexy	Pandas	(let's	pwn	the	plugs!)
48bits	(keep	up	the	good	work)
Gerardo	(ideas	and	tips	for	the	book)
pof	(for	the	crackme	tutorial	and	usability	tips)
Esteve	(search	engine+some	code	graph	stuff)
revenge	(OSX	debugger+mach0	work)
Lia	(4teh	luf	:)

introduction

6

http://www.radare.org/get/radare.pdf

Introduction
This	book	aims	to	cover	most	usage	aspects	of	radare2.	A	framework	for	reverse
engineering	and	analyzing	binaries.

--pancake

Introduction

7

History
The	radare	project	began	in	February	of	2006	to	provide	a	free	and	simple	command-line
hexadecimal	editor	with	support	for	64-bit	offsets.	The	intention	was	to	use	the	tool	to
perform	searches	and	help	recover	data	from	hard-disks.

Since	then,	the	project	has	evolved	to	provide	a	complete	framework	for	analyzing	binaries
while	making	use	of	basic	*NIX	concepts.	Those	concepts	include	the	famous	"everything	is
a	file,"	"small	programs	that	interact	using	stdin/stdout,"	and	"keep	it	simple"	paradigms.

It	is	mostly	a	single-person	project.	However,	ideas	and	source	code	contributions	are
greatly	appreciated.

The	central	focus	of	this	project	is	the	hexadecimal	editor.	Additionally,	this	project	contains
an	assembler/disassembler,	code/data	analysis	and	graphing	tools,	scripting	features,	easy
Unix	integration,	and	more.

History

8

Overview
The	Radare2	project	is	a	set	of	small	command-line	utilities	that	can	be	used	together	or
independently.

radare2

The	core	of	the	hexadecimal	editor	and	debugger.	radare2	allows	you	to	open	a	number	of
input/output	sources	as	if	they	were	simple,	plain	files,	including	disks,	network	connections,
kernel	drivers,	processes	under	debugging,	and	so	on.

It	implements	an	advanced	command	line	interface	for	moving	around	a	file,	analyzing	data,
disassembling,	binary	patching,	data	comparison,	searching,	replacing,	visualizing.	It	can	be
scripted	with	a	variety	of	languages,	including	Ruby,	Python,	Lua,	and	Perl.

rabin2

A	program	to	extract	information	from	executable	binaries,	such	as	ELF,	PE,	Java	CLASS,
and	Mach-O.	rabin2	is	used	by	the	core	to	get	exported	symbols,	imports,	file	information,
cross	references	(xrefs),	library	dependencies,	sections,	etc.

rasm2

A	command	line	assembler	and	disassembler	for	multiple	architectures	(including	Intel	x86
and	x86-64,	MIPS,	ARM,	PowerPC,	Java,	and	MSIL).

Examples

$	rasm2	-a	java	'nop'

00

$	rasm2	-a	x86	-d	'90'

nop

$	rasm2	-a	x86	-b	32	'mov	eax,	33'

b821000000

$	echo	'push	eax;nop;nop'	|	rasm2	-f	-

509090

rahash2

Overview

9

An	implementation	of	a	block-based	hash	tool.	From	small	text	strings	to	large	disks,
rahash2	supports	multiple	algorithms,	including	MD4,	MD5,	CRC16,	CRC32,	SHA1,
SHA256,	SHA384,	SHA512,	par,	xor,	xorpair,	mod255,	hamdist,	or	entropy.	rahash2	can	be
used	to	check	the	integrity	of,	or	track	changes	to,	big	files,	memory	dumps,	and	disks.

Examples

$	rahash2	file

file:	0x00000000-0x00000007	sha256:	887cfbd0d44aaff69f7bdbedebd282ec96191cce9d7fa73362

98a18efc3c7a5a

$	rahash2	file	-a	md5

file:	0x00000000-0x00000007	md5:	d1833805515fc34b46c2b9de553f599d

radiff2

A	binary	diffing	utility	that	implements	multiple	algorithms.	It	supports	byte-level	or	delta
diffing	for	binary	files,	and	code-analysis	diffing	to	find	changes	in	basic	code	blocks
obtained	from	the	radare	code	analysis,	or	from	the	IDA	analysis	using	the	rsc	idc2rdb	script.

rafind2

A	program	to	find	byte	patterns	in	files.

ragg2

A	frontend	for	r_egg.	ragg2	compiles	programs	written	in	a	simple	high-level	language	into
tiny	binaries	for	x86,	x86-64,	and	ARM.

Examples

Overview

10

			$	cat	hi.r

			/*	hello	world	in	r_egg	*/

			write@syscall(4);	//x64	write@syscall(1);

			exit@syscall(1);	//x64	exit@syscall(60);

			main@global(128)	{

					.var0	=	"hi!\n";

					write(1,.var0,	4);

					exit(0);

			}

			$	ragg2	-O	-F	hi.r

			$./hi

			hi!

			$	cat	hi.c

			main@global(0,6)	{

					write(1,	"Hello0",	6);

					exit(0);

			}

			$	ragg2	hi.c

			$./hi.c.bin

			Hello

rarun2

A	launcher	for	running	programs	within	different	environments,	with	different	arguments,
permissions,	directories,	and	overridden	default	file	descriptors.	rarun2	is	useful	for:

Crackmes
Fuzzing
Test	suites

Sample	rarun2	script

			$	cat	foo.rr2

			#!/usr/bin/rarun2

			program=./pp400

			arg0=10

			stdin=foo.txt

			chdir=/tmp

			#chroot=.

			./foo.rr2

Connecting	a	Program	to	a	Socket

Overview

11

			$	nc	-l	9999

			$	rarun2	program=/bin/ls	connect=localhost:9999

Debugging	a	Program	by	Redirecting	IO	to	Another
Terminal

1	-	open	a	new	terminal	and	type	'tty'	to	get	a	terminal	name:

$	tty	;	clear	;	sleep	999999

/dev/ttyS010

2	-	Create	a	new	file	containing	the	following	rarun2	profile	named	foo.rr2:

#!/usr/bin/rarun2

program=/bin/ls	

stdio=/dev/ttys010

3	-	Launch	the	following	radare2	command:	r2	-R	foo.rr2	-d	ls

rax2

A	minimalistic	mathematical	expression	evaluator	for	the	shell	that	is	useful	for	making	base
conversions	between	floating	point	values,	hexadecimal	representations,	hexpair	strings	to
ASCII,	octal	to	integer,	etc.	It	also	supports	endianness	settings	and	can	be	used	as	an
interactive	shell	if	no	arguments	are	given.

Examples

$	rax2	1337

0x539

$	rax2	0x400000

4194304

$	rax2	-b	01111001

y

$	rax2	-S	radare2

72616461726532

$	rax2	-s	617765736f6d65

awesome

Overview

12

Overview

13

Getting	radare2
You	can	get	radare	from	the	website,	http://radare.org/,	or	the	GitHub	repository,
https://github.com/radare/radare2.

Binary	packages	are	available	for	a	number	of	operating	systems	(Ubuntu,	Maemo,	Gentoo,
Windows,	iPhone,	and	so	on).	Yet,	you	are	highly	encouraged	to	get	the	source	and	compile
it	yourself	to	better	understand	the	dependencies,	to	make	examples	more	accessible	and	of
course	to	have	the	most	recent	version.

A	new	stable	release	is	typically	published	every	month.	Nightly	tarballs	are	sometimes
available	at	http://bin.rada.re/.

The	radare	development	repository	is	often	more	stable	than	the	'stable'	releases.	To	obtain
the	latest	version:

$	git	clone	https://github.com/radare/radare2.git

This	will	probably	take	a	while,	so	take	a	coffee	break	and	continue	reading	this	book.

To	update	your	local	copy	of	the	repository,	use		git	pull		anywhere	in	the	radare2	source
code	tree:

$	git	pull

If	you	have	local	modifications	of	the	source,	you	can	revert	them	(and	loose	them!)	with:

$	git	reset	--hard	HEAD

Or	send	me	a	patch:

$	git	diff	>	radare-foo.patch

The	most	common	way	to	get	r2	updated	and	installed	system	wide	is	by	using:

$	sys/install.sh

Helper	Scripts

Getting	radare2

14

http://radare.org/
https://github.com/radare/radare2
http://bin.rada.re/

Take	a	look	at	the	sys/*	scripts,	those	are	used	to	automate	stuff	related	to	syncing,	building
and	installing	r2	and	its	bindings.

The	most	important	one	is	sys/install.sh.	It	will	pull,	clean,	build	and	symstall	r2	system	wide.

Symstalling	is	the	process	of	installing	all	the	programs,	libraries,	documentation	and	data
files	using	symlinks	instead	of	copying	the	files.

By	default	it	will	be	installed	in	/usr,	but	you	can	define	a	new	prefix	as	argument.

This	is	useful	for	developers,	because	it	permits	them	to	just	run	'make'	and	try	changes
without	having	to	run	make	install	again.

Cleaning	Up

Cleaning	up	the	source	tree	is	important	to	avoid	problems	like	linking	to	old	objects	files	or
not	updating	objects	after	an	ABI	change.

The	following	commands	may	help	you	to	get	your	git	clone	up	to	date:

$	git	clean	-xdf

$	git	reset	--hard	@~10

$	git	pull

If	you	want	to	remove	previous	installations	from	your	system,	you	must	run	the	following
commands:

$./configure	--prefix=/usr/local

$	make	purge

Getting	radare2

15

Compilation	and	Portability
Currently	the	core	of	radare2	can	be	compiled	on	many	systems	and	architectures,	but	the
main	development	is	done	on	GNU/Linux	with	GCC,	and	on	MacOS	X	with	clang.	Radare	is
also	known	to	compile	on	many	different	systems	and	architectures	(including	TCC	and
SunStudio).

People	often	want	to	use	radare	as	a	debugger	for	reverse	engineering.	Currently,	the
debugger	layer	can	be	used	on	Windows,	GNU/Linux	(Intel	x86	and	x86_64,	MIPS,	and
ARM),	FreeBSD,	NetBSD,	and	OpenBSD	(Intel	x86	and	x86_64).	There	are	plans	to	support
Solaris	and	MacOS	X.

Compared	to	core,	the	debugger	feature	is	more	restrictive	portability-wise.	If	the	debugger
has	not	been	ported	to	your	favorite	platform,	you	can	disable	the	debugger	layer	with	the	--
without-debugger		configure		script	option	when	compiling	radare2.

Note	that	there	are	I/O	plugins	that	use	GDB,	GDB	Remote,	or	Wine	as	back-ends,	and
therefore	rely	on	presence	of	corresponding	third-party	tools.

To	build	on	a	system	using	ACR/GMAKE	(e.g.	on	*BSD	systems):

$./configure	--prefix=/usr

$	gmake

$	sudo	gmake	install

There	is	also	a	simple	script	to	do	this	automatically:

$	sys/install.sh

Static	Build

You	can	build	statically	radare2	and	all	the	tools	with	the	command:

$	sys/static.sh

Docker

Radare2	repository	ships	a	Dockerfile	that	you	can	use	with	Docker.

This	dockerfile	is	also	used	by	Remnux	distribution	from	SANS,	and	is	available	on	the
docker	registryhub.

Compilation	and	Portability

16

https://github.com/radare/radare2/blob/master/doc/Dockerfile
https://registry.hub.docker.com/u/remnux/radare2/

Cleaning	Up	Old	Radare2	Installations

./configure	--prefix=/old/r2/prefix/installation

make	purge

Compilation	and	Portability

17

Compilation	on	Windows

Mingw32

The	easy	way	to	compile	things	for	Windows	is	using	Mingw32.	The	w32	builds	distributed
from	the	radare	homepage	are	generated	from	a	GNU/Linux	box	using	Mingw32	and	they
are	tested	with	Wine.	Also	keep	in	mind,	that	Mingw-w64	isn't	tested,	so	no	guarantees	here.

Be	sure	to	setup	your	Mingw32	to	compile	with	thread	model:	win32,	not	posix,	and	target
should	be	mingw32.	Before	the	starting	of	compilation	you	need	to	setup	git	first,	for	a
proper	automatic	fetching	of	capstone:

git	config	--global	core.autocrlf	true

git	config	--global	core.filemode	false

The	following	is	an	example	of	compiling	with	MinGW32	(you	need	to	have	installed	zip	for
Windows):

CC=i486-mingw32-gcc	./configure

make

make	w32dist

zip	-r	w32-build.zip	w32-build

This	generates	a	native,	32-bit	console	application	for	Windows.	The	'i486-mingw32-gcc'
compiler	is	the	one	I	have	in	my	box,	you	will	probably	need	to	change	this.

To	simplify	the	building	under	Windows/Mingw32	there	is	a	script	in	radare2	sources:
	sys/mingw32.bat	.	Simply	run	it	from	the	cmd.exe	(or	ConEmu/cmd.exe).	It	assumes	that
you	have	Mingw32	installed	in		C:\Mingw		and	Git	in		C:\Program	Files	(x86)\Git	.	If	you	want
to	use	another	installations,	just	set		MINGW_PATH		and		GIT_PATH		variables	correspondingly:

set	MINGW_PATH=D:\Mingw32

set	"GIT_PATH=E:\Program	and	Stuff\Git"

sys\mingw32.bat

Please,	note,	that	this	script	should	be	run	from	radare2	directory.

Cygwin

Compilation	on	Windows

18

Cygwin	is	another	possibility;	however,	issues	related	to	Cygwin	libraries	can	make
debugging	difficult.	But	using	binary	compiled	for	Cygwin	will	allow	you	to	use	Unicode	in	the
Windows	console,	and	to	have	256	colors.

Note,	Cygwin	build	require	exactly	the	opposite	git	configuration,	so	setup	git	first,	for	a
proper	automatic	fetching	of	capstone:

git	config	--global	core.autocrlf	false

Please,	be	sure	to	build	radare2	from	the	same	environment	you're	going	to	use	r2	in.	If	you
are	going	to	use	r2	in	MinGW32	shell	or	cmd.exe	—	you	should	build	r2	in	the	MinGW32
environment.	And	if	you	are	going	to	use	r2	in	Cygwin	—	you	have	to	build	r2	from	the
Cygwin	shell.	Since	Cygwin	is	more	UNIX-compatible	than	MinGW,	the	radare2	supports
more	colors	and	Unicode	symbols	if	build	using	the	former	one.

There	is	a	script	that	automates	process	of	detecting	the	crosscompiler	toolchain
configuration,	and	builds	a	zip	file	containing	r2	programs	and	libraries	that	can	be	deployed
on	Windows	or	Wine:

sys/mingw32.sh

Mingw-W64

Download	the	MSYS2	distribution	from	the	official	site:	http://msys2.github.io/
Setup	the	proxy	(if	needed):

export	http_proxy=<myusername>:<mypassword>@zz-wwwproxy-90-v:8080

export	https_proxy=$http_proxy

export	ftp_proxy=$http_proxy

export	rsync_proxy=$http_proxy

export	rsync_proxy=$http_proxy

export	no_proxy="localhost,127.0.0.1,localaddress,.localdomain.com"

Update	packages:

pacman	--needed	-Sy	bash	pacman	pacman-mirrors	msys2-runtime	mingw-w64-x86_64-tool

chain

Close	MSYS2,	run	it	again	from	Start	menu	and	update	the	rest	with

pacman	-Su

Install	the	building	essentials:

Compilation	on	Windows

19

http://msys2.github.io/

pacman	-S	git	make	zip	gcc	patch

Compile	the	radare2:

./configure	--with-ostype=windows	;	make	;	make	w32dist

Bindings

To	build	radare2	bindings,	you	will	need	to	install	Vala	(valac)	for	Windows

Then	download	valabind	and	build	it:

git	clone	https://github.com/radare/valabind.git	valabind

cd	valabind

make

make	install

After	you	installed	valabind,	you	can	build	radare2-bindings,	for	example	for	Python	and
Perl:

git	clone	https://github.com/radare/radare2-bindings.git	radare2-bindings

cd	radare2-bindings

./configure	--enable=python,perl

make

make	install

Compilation	on	Windows

20

https://wiki.gnome.org/Projects/Vala/ValaOnWindows
https://github.com/radare/valabind

Command-line	Options
The	radare	core	accepts	many	flags	from	command	line.

An	excerpt	from	usage	help	message:

$	radare2	-h

Usage:	r2	[-dDwntLqv]	[-P	patch]	[-p	prj]	[-a	arch]	[-b	bits]	[-i	file]	[-s	addr]	[-B	

blocksize]	[-c	cmd]	[-e	k=v]	file|-

			-a	[arch]				set	asm.arch

			-A											run	'aa'	command	to	analyze	all	referenced	code

			-b	[bits]				set	asm.bits

			-B	[baddr]			set	base	address	for	PIE	binaries

			-c	'cmd..'			execute	radare	command

			-C											file	is	host:port	(alias	for	-c+=http://%s/cmd/)

			-d											use	'file'	as	a	program	for	debug

			-D	[backend]	enable	debug	mode	(e	cfg.debug=true)

			-e	k=v							evaluate	config	var

			-f											block	size	=	file	size

			-h,	-hh						show	help	message,	-hh	for	long

			-i	[file]				run	script	file

			-k	[kernel]		set	asm.os	variable	for	asm	and	anal

			-l	[lib]					load	plugin	file

			-L											list	supported	IO	plugins

			-m	[addr]				map	file	at	given	address

			-n											disable	analysis

			-N											disable	user	settings

			-q											quiet	mode	(no	promt)	and	quit	after	-i

			-p	[prj]					set	project	file

			-P	[file]				apply	rapatch	file	and	quit

			-s	[addr]				initial	seek

			-S											start	r2	in	sandbox	mode

			-t											load	rabin2	info	in	thread

			-v,	-V							show	radare2	version	(-V	show	lib	versions)

			-w											open	file	in	write	mode

Common	usage	patterns	of	command-line	options.

Open	a	file	in	write	mode	without	parsing	the	file	format	headers.

$	r2	-nw	file

Quickly	get	into	an	r2	shell	without	opening	any	file.

$	r2	-

Specify	which	sub-binary	you	want	to	select	when	opening	a	fatbin	file:

Command-line	Flags

21

$	r2	-a	ppc	-b	32	ls.fat

Run	a	script	before	showing	interactive	command-line	prompt:

$	r2	-i	patch.r2	target.bin

Execute	a	command	and	quit	without	entering	the	interactive	mode:

$	r2	-qc	ij	hi.bin	>	imports.json

Configure	an	eval	variable:

$	r2	-e	scr.color=false	blah.bin

Debug	a	program:

$	r2	-d	ls

Use	an	existing	project	file:

$	r2	-p	test

Command-line	Flags

22

Basic	Radare	Usage
The	learning	curve	for	radare	is	usually	somewhat	steep	at	the	beginning.	Although	after	an
hour	of	using	it	you	should	easily	understand	how	most	things	work,	and	how	to	combine
various	tools	radare	offers,	you	are	encouraged	to	read	the	rest	of	this	book	to	understand
how	some	non-trivial	things	work,	and	to	ultimately	improve	your	skills	with	radare.

Navigation,	inspection	and	modification	of	a	loaded	binary	file	is	performed	using	three
simple	actions:	seek	(to	position),	print	(buffer),	and	alternate	(write,	append).

The	'seek'	command	is	abbreviated	as		s		and	accepts	an	expression	as	its	argument.	The
expression	can	be	something	like		10	,		+0x25	,	or		[0x100+ptr_table]	.	If	you	are	working
with	block-based	files,	you	may	prefer	to	set	the	block	size	to	a	required	value	with		b	
command,	and	seek	forward	or	backwards	with	positions	aligned	to	it.	Use		s++		and		s--	
commands	to	navigate	this	way.

If	r2	opens	an	executable	file,	by	default	it	will	open	the	file	in	VA	mode	and	the	sections	will
be	mapped	to	their	virtual	addresses.	In	VA	mode,	seeking	is	based	on	the	virtual	address
and	the	starting	position	is	set	to	the	entry	point	of	the	executable.	Using		-n		option	you	can
suppress	this	default	behavior	and	ask	r2	to	open	the	file	in	non-VA	mode	for	you.	In	non-VA
mode,	seeking	is	based	on	the	offset	from	the	beginning	of	the	file.

The	'print'	command	is	abbreviated	as		p		and	has	a	number	of	submodes	—	the	second
letter	specifying	a	desired	print	mode.	Frequent	variants	include		px		to	print	in	hexadecimal,
and		pd		for	disassembling.

To	be	allowed	to	write	files,	specify	the		-w		option	to	radare	when	opening	a	file.	The		w	
command	can	be	used	to	write	strings,	hexpairs	(x		subcommand),	or	even	assembly
opcodes	(a		subcommand).	Examples:

>	w	hello	world									;	string

>	wx	90	90	90	90								;	hexpairs

>	wa	jmp	0x8048140						;	assemble

>	wf	inline.bin									;	write	contents	of	file

Appending	a		?		to	a	command	will	show	its	help	message,	for	example,		p?	.

To	enter	visual	mode,	press		V<enter>	.	Use		q		to	quit	visual	mode	and	return	to	the	prompt.
In	visual	mode	you	can	use	HJKL	keys	to	navigate	(left,	down,	up,	and	right,	respectively).
You	can	use	these	keys	in	cursor	mode	toggled	by		c		key.	To	select	a	byte	range	in	cursor
mode,	hold	down		SHIFT		key,	and	press	navigation	keys	HJKL	to	mark	your	selection.	While

Basic	Usage

23

in	visual	mode,	you	can	also	overwrite	bytes	by	pressing		i	.	You	can	press		TAB		to	switch
between	the	hex	(middle)	and	string	(right)	columns.	Pressing		q		inside	the	hex	panel
returns	you	to	visual	mode.

Basic	Usage

24

Command	Format
A	general	format	for	radare	commands	is	as	follows:

[.][times][cmd][~grep][@[@iter]addr!size][|>pipe]	;

Commands	are	identified	by	a	single	case-sensitive	character	[a-zA-Z].	To	repeatedly
execute	a	command,	prefix	the	command	with	a	number:

px				#	run	px

3px			#	run	px	3	times

The		!		prefix	is	used	to	execute	a	command	in	shell	context.	If	a	single	exclamation	mark	is
used,	commands	will	be	sent	to	the	system()	hook	defined	in	currently	loaded	I/O	plugin.
This	is	used,	for	example,	by	the	ptrace	I/O	plugin,	which	accepts	debugger	commands	from
radare	interface.

A	few	examples:

ds																				;	call	the	debugger's	'step'	command

px	200	@	esp										;	show	200	hex	bytes	at	esp

pc	>	file.c											;	dump	buffer	as	a	C	byte	array	to	file.c

wx	90	@@	sym.*								;	write	a	nop	on	every	symbol

pd	2000	|	grep	eax				;	grep	opcodes	that	use	the	'eax'	register

px	20	;	pd	3	;	px	40		;	multiple	commands	in	a	single	line

The		@		character	is	used	to	specify	a	temporary	offset	at	which	the	command	to	its	left	will
be	executed.	The	original	seek	position	in	a	file	is	then	restored.	For	example,		pd	5	@
0x100000fce		to	disassemble	5	instructions	at	address	0x100000fce.

The		~		character	enables	internal	grep-like	function	used	to	filter	output	of	any	command.
For	example:

pd	20~call												;	disassemble	20	instructions	and	grep	output	for	'call'

Additionally,	you	can	either	grep	for	columns	or	rows:

pd	20~call:0										;	get	first	row

pd	20~call:1										;	get	second	row

pd	20~call[0]									;	get	first	column

pd	20~call[1]									;	get	second	column

Command	Format

25

Or	even	combine	them:

pd	20~call:0[0]							;	grep	the	first	column	of	the	first	row	matching	'call'

This	internal	grep	function	is	a	key	feature	for	scripting	radare,	because	it	can	be	used	to
iterate	over	a	list	of	offsets	or	data	generated	by	disassembler,	ranges,	or	any	other
command.	Refer	to	the	macros	section	(iterators)	for	more	information.

Command	Format

26

Expressions
Expressions	are	mathematical	representations	of	64-bit	numerical	values.	They	can	be
displayed	in	different	formats,	be	compared	or	used	with	all	commands	accepting	numeric
arguments.	Expressions	can	use	traditional	arithmetic	operations,	as	well	as	binary	and
boolean	ones.	To	evaluate	mathematical	expressions	prepend	them	with	command		?	.	For
example:

[0xB7F9D810]>	?	0x8048000

134512640	0x8048000	01001100000	128.0M	804000:0000	134512640	00000000	134512640.0	0.00

0000		

[0xB7F9D810]>	?	0x8048000+34

134512674	0x8048022	01001100042	128.0M	804000:0022	134512674	00100010	134512674.0	0.00

0000		

[0xB7F9D810]>	?	0x8048000+0x34

134512692	0x8048034	01001100064	128.0M	804000:0034	134512692	00110100	134512692.0	0.00

0000		

[0xB7F9D810]>	?	1+2+3-4*3

-6	0xfffffffffffffffa	01777777777777777777772	17179869183.0G	fffff000:0ffa	-6			

Supported	arithmetic	operations	are:

+	:	addition
-	:	subtraction
*	:	multiplication
/	:	division
%	:	modulus
>	:	shift	right
<	:	shift	left

Use	of	logical	OR	should	be	escaped	using	quotes,	or	it	will	be	mistaken	for	a	pipe	opeator:

[0x00000000]>	"?	1	|	2"	3	0x3	03	3	0000:0003	3	"\x03"	00000011	2.0	2.000000f	2.000000

Numbers	can	be	displayed	in	several	formats:

0x033			:	hexadecimal	can	be	displayed

3334				:	decimal

sym.fo		:	resolve	flag	offset

10K					:	KBytes		10*1024

10M					:	MBytes		10*1024*1024

Expressions

27

You	can	also	use	variables	and	seek	positions	to	build	complex	expressions.	Available
values	include:

?@?				or	type	@@?						;	misc	help	for	'@'	(seek),	'~'	(grep)	(see	~??)

?$?											;	show	available	'$'	variables

$$;	here	(the	current	virtual	seek)

$l												;	opcode	length

$s												;	file	size

$j												;	jump	address	(e.g.	jmp	0x10,	jz	0x10	=>	0x10)

$f												;	jump	fail	address	(e.g.	jz	0x10	=>	next	instruction)

$m												;	opcode	memory	reference	(e.g.	mov	eax,[0x10]	=>	0x10)

Some	more	examples:

[0x4A13B8C0]>	?	$m	+	$l

140293837812900	0x7f98b45df4a4	03771426427372244	130658.0G	8b45d000:04a4	1402938378129

00	10100100	140293837812900.0	-0.000000

[0x4A13B8C0]>	pd	1	@	+$l

0x4A13B8C2			call	0x4a13c000

Expressions

28

Rax2
The		rax2		utility	comes	with	the	radare	framework	and	aims	to	be	a	minimalistic	expression
evaluator	for	the	shell.	It	is	useful	for	making	base	conversions	between	floating	point
values,	hexadecimal	representations,	hexpair	strings	to	ascii,	octal	to	integer.	It	supports
endianness	and	can	be	used	as	a	shell	if	no	arguments	are	given.

$	rax2	-h

Usage:	rax2	[options]	[expr	...]

int			->		hex											;		rax2	10

hex			->		int											;		rax2	0xa

-int		->		hex											;		rax2	-77

-hex		->		int											;		rax2	0xffffffb3

int			->		bin											;		rax2	b30

bin			->		int											;		rax2	1010d

float	->		hex											;		rax2	3.33f

hex			->		float									;		rax2	Fx40551ed8

oct			->		hex											;		rax2	35o

hex			->		oct											;		rax2	Ox12	(O	is	a	letter)

bin			->		hex											;		rax2	1100011b

hex			->		bin											;		rax2	Bx63

raw			->		hex											;		rax2	-S	<	/binfile

hex			->		raw											;		rax2	-s	414141

-b				binstr	->	bin					;		rax2	-b	01000101	01110110

-B				keep	base									;		rax2	-B	33+3	->	36

-d				force	integer					;		rax2	-d	3	->	3	instead	of	0x3

-e				swap	endianness			;		rax2	-e	0x33

-f				floating	point				;		rax2	-f	6.3+2.1

-h				help														;		rax2	-h

-k				randomart									;		rax2	-k	0x34	1020304050

-n				binary	number					;		rax2	-e	0x1234			#	34120000

-s				hexstr	->	raw					;		rax2	-s	43	4a	50

-S				raw	->	hexstr					;		rax2	-S	<	/bin/ls	>	ls.hex

-t				tstamp	->	str					;		rax2	-t	1234567890

-x				hash	string							;		rax2	-x	linux	osx

-u				units													;		rax2	-u	389289238	#	317.0M

-v				version											;		rax2	-V

Some	examples:

Rax2

29

$	rax2	3+0x80

0x83

$	rax2	0x80+3	

131

$	echo	0x80+3	|	rax2

131

$	rax2	-s	4142

AB

$	rax2	-S	AB	

4142

$	rax2	-S	<	bin.foo

...

$	rax2	-e	33	

0x21000000

$	rax2	-e	0x21000000	

33

$	rax2	-k	90203010

+--[0x10302090]---+

|Eo.	.												|

|									|

|						o										|

|							.									|

|								S								|

|																	|

|																	|

|																	|

|																	|

+-----------------+

Rax2

30

Basic	Debugger	Session
To	debug	a	program,	start	radare	with	the		-d		option.	You	can	attach	to	a	running	process
by	specifying	its	PID,	or	you	can	start	a	new	program	by	specifying	its	name	and
parameters:

$	pidof	mc

32220

$	r2	-d	32220

$	r2	-d	/bin/ls

In	the	second	case,	the	debugger	will	fork	and	load	the	debuggee		ls		program	in	memory.
It	will	pause	its	execution	early	in		ld.so		dynamic	linker.	Therefore,	do	not	expect	to	see	an
entrypoint	or	shared	libraries	at	this	point.	You	can	override	this	behavior	by	setting	another
name	for	and	entry	breakpoint.	To	do	this,	add	a	radare	command		e	dbg.bep=entry		or		e
dbg.bep=main		to	your	startup	script,	usually	it	is		~/.radare2rc	.	Be	warned	though	that
certain	malware	or	other	tricky	programs	can	actually	execute	code	before		main()		and	thus
you'll	be	unable	to	control	them.

Below	is	a	list	of	most	common	commands	used	with	debugger:

>	d?										;	get	help	on	debugger	commands

>	ds	3								;	step	3	times

>	db	0x8048920		;	setup	a	breakpoint

>	db	-0x8048920	;	remove	a	breakpoint

>	dc										;	continue	process	execution

>	dcs								;	continue	until	syscall

>	dd												;	manipulate	file	descriptors

>	dm										;	show	process	maps

>	dmp	A	S	rwx		;	change	page	at	A	with	size	S	protection	permissions

>	dr	eax=33	;	set	register	value.	eax	=	33

Maybe	a	simpler	method	to	use	debugger	in	radare	is	to	switch	it	to	visual	mode.	That	way
you	will	not	have	to	remember	many	commands	nor	to	keep	program	state	in	your	mind.	To
enter	visual	mode	use		V	:

[0xB7F0C8C0]>	V

The	initial	view	after	entering	visual	mode	is	a	hexdump	view	of	current	target	program
counter	(e.g.,	EIP	for	x86).	Pressing		p		will	allow	you	to	cycle	through	the	rest	of	visual
mode	views.	You	can	press		p		and		P		to	rotate	through	the	most	commonly	used	print

Basic	Debugger	Session

31

modes.	Use	F7	or		s		to	step	into	and	F8	or		S		to	step	over	current	instruction.	With	the		c	
key	you	can	toggle	the	cursor	mode	to	mark	a	byte	range	selection	(for	example,	to	later
overwrite	them	with	nop).	You	can	set	breakpoints	with		F2		key.

In	visual	mode	you	can	enter	regular	radare	commands	by	prepending	them	with		:	.	For
example,	to	dump	a	one	block	of	memory	contents	at	ESI:	x	@	esi

To	get	help	on	visual	mode,	press		?	.	To	scroll	help	screen,	use	arrows.	To	exit	help	view,
press		q	.

A	frequently	used	command	is		dr	,	to	read	or	write	values	of	target's	general	purpose
registers.	You	can	also	manipulate	the	hardware	and	extended/floating	point	registers.

Basic	Debugger	Session

32

Contributing

Radare2	Book

If	you	want	to	contribute	to	the	Radare2	book,	you	can	do	it	at	the	Github	repository.
Suggested	contributions	include:

Crackme	writeups
CTF	writeups
Documentation	on	how	to	use	Radare2
Documentation	on	developing	for	Radare2
Conference	presentations/workshops	using	Radare2
Missing	content	from	the	Radare1	book	updated	to	Radare2

Please	get	permission	to	port	any	content	you	do	not	own/did	not	create	before	you	put	it	in
the	Radare2	book.

Contributing	to	radare2

33

https://github.com/radare/radare2book

Configuration
The	core	reads		~/.radare2rc		while	starting.	You	can	add		e		commands	to	this	file	to	tune
radare	configuration	to	your	taste.

To	prevent	radare	from	parsing	this	file	at	start,	pass	it		-n		option.

All	the	configuration	of	radare	is	done	with	the		eval		commands.	A	typical	startup
configuration	file	looks	like	this:

$	cat	~/.radare2rc

e	scr.color	=	true

e	dbg.bep			=	loader

Configuration	can	also	be	changed	with		-e		command-line	option.	This	way	you	can	adjust
configuration	from	the	command	line,	keeping	the	.radare2rc	file	intact.	For	example,	to	start
with	empty	configuration	and	then	adjust		scr.color		and		asm.syntax		the	following	line	may
be	used:

$	radare2	-n	-e	scr.color=true	-e	asm.syntax=intel	-d	/bin/ls

Internally,	the	configuration	is	stored	in	a	hash	table.	The	variables	are	grouped	in
namespaces:		cfg.	,		file.	,		dbg.	,		scr.		and	so	on.

To	get	a	list	of	all	configuration	variables	just	type		e		in	the	command	line	prompt.	To	limit
output	to	a	selected	namespace,	pass	it	with	an	ending	dot	to		e	.	For	example,		e	file.	
will	display	all	variables	defined	inside	"file"	namespace.

To	get	help	about		e		command	type		e?	:

Usage:	e[?]	[var[=value]]

e?														show	this	help

e?asm.bytes					show	description

e??													list	config	vars	with	description

e															list	config	vars

e-														reset	config	vars

e*														dump	config	vars	in	r	commands

e!a													invert	the	boolean	value	of	'a'	var

er	[key]								set	config	key	as	readonly.	no	way	back

ec	[k]	[color]		set	color	for	given	key	(prompt,	offset,	...)

e	a													get	value	of	var	'a'

e	a=b											set	var	'a'	the	'b'	value

env	[k[=v]]					get/set	environment	variable

Configuration

34

A	simpler	alternative	to		e		command	is	accessible	from	the	visual	mode.	Type		Ve		to	enter
it,	use	arrows	(up,	down,	left,	right)	to	navigate	the	configuration,	and		q		to	exit	it.	The	start
screen	for	the	visual	configuration	edit	looks	like	this:

Eval	spaces:																																																																			

>		anal

			asm

			scr

			asm

			bin

			cfg

			diff

			dir

			dbg

			cmd

			fs

			hex

			http

			graph

			hud

			scr

			search

			io

For	configuration	values	that	can	take	one	of	several	values,	you	can	use	the		=?		operator
to	get	a	list	of	valid	values:

[0x00000000]>	e	scr.nkey	=?

scr.nkey	=	fun,	hit,	flag

Configuration

35

Colors
Console	access	is	wrapped	in	API	that	permits	to	show	output	of	any	command	as	ANSI,
w32	console	or	HTML	formats	(more	to	come:	ncurses,	Pango	etc.)	This	allows	radare's
core	to	run	inside	environments	with	limited	displaying	capabilities,	like	kernels	or	embedded
devices.	It	is	still	possible	to	receive	data	from	it	in	your	favorite	format.	To	enable	colors
support	by	default,	add	a	corresponding	configuration	option	to	the	.radare2	configuration
file:

$	echo	'e	scr.color=true'	>>	~/.radare2rc

It	is	possible	to	configure	color	of	almost	any	element	of	disassembly	output.	For	*NIX
terminals,	r2	accepts	color	specification	in	RGB	format.	To	change	the	console	color	palette
use		ec		command.	Type		ec		to	get	a	list	of	all	currently	used	colors.	Type		ecs		to	show	a
color	palette	to	pick	colors	from:

Colors

36

xvilka	theme

Colors

37

ec	fname	rgb:0cf

ec	label	rgb:0f3

ec	math	rgb:660

ec	bin	rgb:f90

ec	call	rgb:f00

ec	jmp	rgb:03f

ec	cjmp	rgb:33c

ec	offset	rgb:366

ec	comment	rgb:0cf

ec	push	rgb:0c0

ec	pop	rgb:0c0

ec	cmp	rgb:060

ec	nop	rgb:000

ec	b0x00	rgb:444

ec	b0x7f	rgb:555

ec	b0xff	rgb:666

ec	btext	rgb:777

ec	other	rgb:bbb

ec	num	rgb:f03

ec	reg	rgb:6f0

ec	fline	rgb:fc0

ec	flow	rgb:0f0

Colors

38

Common	Configuration	Variables
Below	is	a	list	of	the	most	frequently	used	configuration	variables.	You	can	get	a	complete
list	by	issuing		e		command	without	arguments.	For	example,	to	see	all	variables	defined	in
the	"cfg"	namespace,	issue		e	cfg.		(mind	the	ending	dot).	You	can	get	help	on	any	eval
configuration	variable	by	using		??e	cfg.	

asm.arch

Defines	target	CPU	architecture	used	for	disassembling	(pd	,		pD		commands)	and	code
analysis	(a		command).	You	can	find	the	list	of	possible	value	by	looking	at	the	result	of		e
asm.arch=?		or		rasm2	-L	.	It	is	quite	simple	to	add	new	architectures	for	disassembling	and
analyzing	code.	There	is	an	interface	for	that.	For	x86,	it	is	used	to	attach	a	number	of	third-
party	disassembler	engines,	including	GNU	binutils,	Udis86	and	a	few	of	handmade	ones.

asm.bits

Determines	width	in	bits	of	registers	for	current	architecture.	Supported	values:	8,	16,	32,	64.
Note	that	not	all	target	architectures	support	all	combinations	for	asm.bits.

asm.syntax

Changes	syntax	flavor	for	disassembler	between	Intel	and	AT&T.	At	the	moment,	this	setting
affects	Udis86	disassembler	for	Intel	32/Intel	64	targets	only.	Supported	values	are		intel	
and		att	.

asm.pseudo

A	boolean	value	to	choose	a	string	disassembly	engine.	"False"	indicates	a	native	one,
defined	by	current	architecture,	"true"	activates	a	pseudocode	strings	format;	for	example,	it
will	show		eax=ebx		instead	of	a		mov	eax,	ebx	.

asm.os

Selects	a	target	operating	system	of	currently	loaded	binary.	Usually	OS	is	automatically
detected	by		rabin	-rI	.	Yet,		asm.os		can	be	used	to	switch	to	a	different	syscall	table
employed	by	another	OS.

Common	Configuration	Variables

39

asm.flags

If	defined	to	"true",	disassembler	view	will	have	flags	column.

asm.linescall

If	set	to	"true",	draw	lines	at	the	left	of	disassemble	output	(pd	,		pD		commands)	to
graphically	represent	control	flow	changes	(jumps	and	calls)	that	are	targeted	inside	current
block.	Also,	see		asm.linesout	.

asm.linesout

When	defined	as	"true",	the	disassembly	view	will	also	draw	control	flow	lines	that	go	ouside
of	the	block.

asm.linestyle

A	boolean	value	which	changes	the	direction	of	control	flow	analysis.	If	set	to	"false",	it	is
done	from	top	to	bottom	of	a	block;	otherwise,	it	goes	from	bottom	to	top.	The	"false"	setting
seems	to	be	a	better	choice	for	improved	readability,	and	is	the	default	one.

asm.offset

Boolean	value	which	controls	visibility	of	offsets	for	individual	disassembled	instructions.

asm.trace

A	boolean	value	that	controls	displaying	of	tracing	information	(sequence	number	and
counter)	at	the	left	of	each	opcode.	It	is	used	to	assist	programs	trace	analysis.

asm.bytes

A	boolean	value	used	to	show	or	hide	displaying	of	raw	bytes	of	instructions.

cfg.bigendian

Change	endianness.	"true"	means	big-endian,	"false"	is	for	little-endian.	"file.id"	and
"file.flag"	both	to	be	true.

Common	Configuration	Variables

40

scr.color

This	boolean	variable	enables	or	disables	colorized	screen	output.

scr.seek

This	variable	accepts	an	expression,	a	pointer	(eg.	eip),	etc.	If	set,	radare	will	set	seek
position	to	its	value	on	startup.

cfg.fortunes

Enables	or	disables	"fortune"	messages	displayed	at	each	radare	start.

Common	Configuration	Variables

41

Basic	Commands
Most	command	names	in	radare	are	derived	from	action	names.	They	should	be	easy	to
remember,	as	they	are	short.	Actually,	all	commands	are	single	letters.	Subcommands	or
related	commands	are	specified	using	the	second	character	of	command	name.	For
example,		/	foo		is	a	command	to	search	plain	string,	while		/x	90	90		is	used	to	look	for
hexadecimal	pairs.

The	general	format	for	a	valid	command	(as	explained	in	the	'Command	Format'	chapter)
looks	like	this:

[[.][times][cmd][~grep][@[@iter]addr!size][|>pipe]	;	...

For	example,

>	3s	+1024				;	seeks	three	times	1024	from	the	current	seek

If	a	command	starts	with		!	,	the	rest	of	the	string	is	passed	to	currently	loaded	IO	plugin	(a
debugger,	for	example).	If	no	plugin	can	handle	the	command,	posix_system()	is	called	to
pass	the	command	to	your	shell.	To	make	sure	your	command	is	directly	passed	to	the	shell,
prefix	it	with	two	exclamation	signs		!!	.

>	!help							;	handled	by	the	debugger	or	shell

>	!!ls								;	run	`ls`	in	the	shell

The	meaning	of	arguments	(iter,	addr,	size)	depends	on	the	specific	command.	As	a	rule	of
thumb,	most	commands	take	a	number	as	an	argument	to	specify	number	of	bytes	to	work
with,	instead	of	currently	defined	block	size.	Some	commands	accept	math	expressions,	or
strings.

>	px	0x17					;	show	0x17	bytes	in	hexa	at	current	seek

>	s	base+0x33	;	seeks	to	flag	'base'	plus	0x33

>	/	lib							;	search	for	'lib'	string.

The		@		sign	is	used	to	specify	a	temporary	offset	location	or	seek	position	at	which	the
command	is	executed,	instead	of	current	seek	position.	This	is	quite	useful	as	you	don't
have	to	seek	around	all	the	time.

Basic	Commands

42

>	p8	10	@	0x4010		;	show	10	bytes	at	offset	0x4010

>	f	patata	@	0x10	;	set	'patata'	flag	at	offset	0x10

Using		@@		you	can	execute	a	single	command	on	a	list	of	flags	matching	the	glob.	You	can
think	of	this	as	a	foreach	operation:

>	s	0

>	/	lib													;	search	'lib'	string

>	p8	20	@@	hit0_*			;	show	20	hexpairs	at	each	search	hit

The		>		operation	is	used	to	redirect	output	of	a	command	into	a	file	(overwriting	it	if	it
already	exists).

>	pr	>	dump.bin			;	dump	'raw'	bytes	of	current	block	to	file	named	'dump.bin'

>	f		>	flags.txt		;	dump	flag	list	to	'flags.txt'

The		|		operation	(pipe)	is	similar	to	what	you	are	used	to	expect	from	it	in	a	*NIX	shell:	us
output	of	one	command	as	input	to	another.

[0x4A13B8C0]>	f	|	grep	section	|	grep	text

0x0805f3b0	512	section._text

0x080d24b0	512	section._text_end

You	can	pass	several	commands	in	a	single	line	by	separating	them	with	semicolon		;	:

>	px	;	dr

Basic	Commands

43

Seeking
The	current	seek	position	is	changed	with		s		command.	It	accepts	a	math	expression	as
argument.	The	expression	can	be	composed	of	shift	operations,	basic	math	operations,	or
memory	access	operations.

[0x00000000]>	s?

Usage:	s[+-]	[addr]

s																	print	current	address

s	0x320											seek	to	this	address

s-																undo	seek

s+																redo	seek

s*																list	undo	seek	history

s++															seek	blocksize	bytes	forward

s--															seek	blocksize	bytes	backward

s+	512												seek	512	bytes	forward

s-	512												seek	512	bytes	backward

sg/sG													seek	begin	(sg)	or	end	(sG)	of	section	or	file

s.hexoff										Seek	honoring	a	base	from	core->offset

sa	[[+-]a]	[asz]		seek	asz	(or	bsize)	aligned	to	addr

sn/sp													seek	next/prev	scr.nkey

s/	DATA											search	for	next	occurrence	of	'DATA'

s/x	9091										search	for	next	occurrence	of	\x90\x91

sb																seek	aligned	to	bb	start

so	[num]										seek	to	N	next	opcode(s)

sf																seek	to	next	function	(f->addr+f->size)

sC	str												seek	to	comment	matching	given	string

sr	pc													seek	to	register

>	3s++								;	3	times	block-seeking

>	s	10+0x80			;	seek	at	0x80+10

If	you	want	to	inspect	the	result	of	a	math	expression,	you	can	evaluate	it	using	the		?	
command.	Simply	pass	the	expression	as	an	argument.	The	result	can	be	displayed	in
hexadecimal,	decimal,	octal	or	binary	formats.

>	?	0x100+200

0x1C8	;	456d	;	710o	;	1100	1000		

In	the	visual	mode	you	can	press		u		(undo)	or		U		(redo)	inside	the	seek	history	to	return
back	to	previous	or	forward	to	the	next	location.

Open	file

Seeking

44

As	test	file	lets	use	some	simple	hello_world.c	compiled	in	Linux	ELF	format.	After	we
compiled	it	lets	open	it	with	radare2

r2	hello_world

Now	we	have	command	prompt

[0x00400410]>

Now	we	are	ready	to	go	deeper.

Seeking	at	any	position
All	seeking	commands	that	have	address	in	command	parameters	can	use	any	base	such
as	hex/octal/binary	or	decimal.

Seek	to	address	0x0,	alternative	command	is	just		0x0	

[0x00400410]>	s	0x0

[0x00000000]>

Print	current	address

[0x00000000]>	s

0x0

[0x00000000]>

there	is	an	alternate	way	to	print	current	position:		?v	$$.

Seek	N	positions	forward,	space	is	optional

[0x00000000]>	s+	128

[0x00000080]>

Undo	last	two	seeks	to	return	to	the	initial	address

[0x00000080]>	s-

[0x00000000]>	s-

[0x00400410]>

we	are	back	at	0x00400410.

Seeking

45

Let's	search	in	the	hello_world	ELF	file	'Hello'.	After	the	search	our	position	will	be	set	at	the
position	of	the	found	string.	Remember	we	can	always	go	back	with		s-	.

[0x00400410]>	s/	Hello

Searching	5	bytes	from	0x00400411	to	0x00600928:	48	65	6c	6c	6f	

Searching	5	bytes	in	[0x400411-0x600928]

hits:	1		hit0_0	..	hit0_0

0x004005b4	hit0_0	"Hello"

[0x004005b4]>s-

[0x00400410]>

There's	also	a	command	for	showing	the	seek	history:

[0x00400410]>	s*

f	undo_3	@	0x400410

f	undo_2	@	0x40041a

f	undo_1	@	0x400410

f	undo_0	@	0x400411

#	Current	undo/redo	position.

f	redo_0	@	0x4005b4

Seeking

46

Block	Size
The	block	size	determines	how	many	bytes	Radare	commands	will	process	when	not	given
an	explicit	size	argument.	You	can	temporally	change	the	block	size	by	specifying	a	numeric
argument	to	the	print	commands.	For	example		px	20	.

[0xB7F9D810]>	b?

Usage:	b[f]	[arg]

b									display	current	block	size

b+3							increase	blocksize	by	3

b-16						decrement	blocksize	by	16

b	33						set	block	size	to	33

b	eip+4			numeric	argument	can	be	an	expression

bf	foo				set	block	size	to	flag	size

bm	1M					set	max	block	size

The		b		command	is	used	to	change	the	block	size:

[0x00000000]>	b	0x100			;	block	size	=	0x100

[0x00000000]>	b	+16					;		...	=	0x110

[0x00000000]>	b	-32					;		...	=	0xf0

The		bf		command	is	used	to	change	the	block	size	to	value	specified	by	a	flag.	For
example,	in	symbols,	the	block	size	of	the	flag	represents	the	size	of	the	function.

[0x00000000]>	bf	sym.main				;	block	size	=	sizeof(sym.main)

[0x00000000]>	pd	@	sym.main		;	disassemble	sym.main

...

You	can	combine	two	operations	in	a	single	one	(pdf):

	[0x00000000]>	pdf	@	sym.main

Block	Size

47

Sections
Firmware	images,	bootloaders	and	binary	files	usually	place	various	sections	of	a	binary	at
different	addresses	in	memory.	To	represent	this	behavior,	radare	offers	the		S		command.

Here's	the	help	message:

[0xB7EE8810]>	S?

Usage:	S[?-.*=adlr]	[...]

S															;	list	sections

S.														;	show	current	section	name

S?														;	show	this	help	message

S*														;	list	sections	(in	radare	commands)

S=														;	list	sections	(in	nice	ascii-art	bars)

Sa[-]	[arch]	[bits]	[[off]]	;	Specify	arch	and	bits	for	given	section

Sd	[file]							;	dump	current	section	to	a	file	(see	dmd)

Sl	[file]							;	load	contents	of	file	into	current	section	(see	dml)

Sr	[name]							;	rename	section	on	current	seek

S	[off]	[vaddr]	[sz]	[vsz]	[name]	[rwx]	;	add	new	section

S-[id|0xoff|*]		;	remove	this	section	definition

You	can	specify	a	section	in	a	single	line:

#	Add	new	section

S	[off]	[vaddr]	[sz]	[vsz]	[name]	[rwx]

For	example:

[0x00404888]>	S	0x00000100	0x00400000	0x0001ae08	0001ae08	test	rwx

Displaying	information	about	sections:

Sections

48

#	List	sections

[0x00404888]>	S

[00]	.	0x00000238	r--	va=0x00400238	sz=0x0000001c	vsz=0000001c	.interp

[01]	.	0x00000254	r--	va=0x00400254	sz=0x00000020	vsz=00000020	.note.ABI_tag

[02]	.	0x00000274	r--	va=0x00400274	sz=0x00000024	vsz=00000024	.note.gnu.build_id

[03]	.	0x00000298	r--	va=0x00400298	sz=0x00000068	vsz=00000068	.gnu.hash

[04]	.	0x00000300	r--	va=0x00400300	sz=0x00000c18	vsz=00000c18	.dynsym

#	List	sections	(in	nice	ascii-art	bars)

[0xB7EEA810]>	S=

...

25		0x0001a600	|-----------------------------#|	0x0001a608	---	.gnu_debuglink

26		0x0001a608	|-----------------------------#|	0x0001a706	---	.shstrtab

27*	0x00000000	|##############################|	0x0001ae08	rwx	ehdr

=>		0x00004888	|-----^------------------------|	0x00004988

The	first	three	lines	are	sections	and	the	last	one	(prefixed	by		=>)	is	the	current	seek
location.

To	remove	a	section	definition,	simply	prefix	the	name	of	the	section	with		-	:

[0xB7EE8810]>	S	-.dynsym

Sections

49

Mapping	Files
Radare	IO	system	allows	you	to	map	contents	of	files	into	the	same	IO	space	used	to
contain	loaded	binary.	New	contents	can	be	placed	at	random	offsets.	This	lets	you	create	a
static	environment	which	emulate	the	view	you	would	have	when	using	a	debugger,	where
the	program	and	all	its	libraries	are	loaded	in	memory	and	can	be	accessed.

Using	the		S		(sections)	command	you	can	define	base	address	for	each	library	to	be
loaded.

Mapping	files	is	done	using	the		o		(open)	command.	Let's	read	the	help:

[0x00000000]>	o?

Usage:	o[com-]	[file]	([offset])

o																		list	opened	files

oc	[file]										open	core	file,	like	relaunching	r2

oo																	reopen	current	file	(kill+fork	in	debugger)

oo+																reopen	current	file	in	read-write

o	4																prioritize	io	on	fd	4	(bring	to	front)

o-1																close	file	index	1

o	/bin/ls										open	/bin/ls	file	in	read-only

o+/bin/ls										open	/bin/ls	file	in	read-write	mode

o	/bin/ls	0x4000			map	file	at	0x4000

on	/bin/ls	0x4000		map	raw	file	at	0x4000	(no	r_bin	involved)

om[?]														create,	list,	remove	IO	maps

Prepare	a	simple	layout:

$	rabin2	-l	/bin/ls

				[Linked	libraries]

				libselinux.so.1

				librt.so.1

				libacl.so.1

				libc.so.6

				4	libraries

Map	a	file:

[0x00001190]>	o	/bin/zsh	0x499999

List	mapped	files:

Mapping	Files

50

[0x00000000]>	o

-	6	/bin/ls	@	0x0	;	r

-	10	/lib/ld-linux.so.2	@	0x100000000	;	r

-	14	/bin/zsh	@	0x499999	;	r

Print	hexadecimal	values	from	/bin/zsh:

[0x00000000]>	px	@	0x499999

Unmap	files	using	the		o-		command.	Pass	required	file	descriptor	to	it	as	an	argument:

[0x00000000]>	o-14

Mapping	Files

51

Print	Modes
One	of	the	key	features	of	radare	is	displaying	information	in	many	formats.	The	goal	is	to
offer	a	selection	of	displaying	choices	to	best	interpret	binary	data.

Binary	data	can	be	represented	as	integers,	shorts,	longs,	floats,	timestamps,	hexpair
strings,	or	more	complex	formats	like	C	structures,	disassembly	listings,	decompilations,	be
a	result	of	an	external	processing...

Below	is	a	list	of	available	print	modes	listed	by		p?	:

[0x08049AD0]>	p?

Usage:	p[=68abcdDfiImrstuxz]	[arg|len]

p=[bep?]	[blks]		show	entropy/printable	chars/chars	bars

p2	[len]									8x8	2bpp-tiles

p6[de]	[len]					base64	decode/encode

p8	[len]									8bit	hexpair	list	of	bytes

pa[ed]	[hex	asm]	assemble	(pa)	or	disasm	(pad)	or	esil	(pae)	from	hexpairs

p[bB]	[len]						bitstream	of	N	bytes

pc[p]	[len]						output	C	(or	python)	format

p[dD][lf]	[l]				disassemble	N	opcodes/bytes	(see	pd?)

pf[?|.nam]	[fmt]	print	formatted	data	(pf.name,	pf.name	$<expr>)

p[iI][df]	[len]		print	N	instructions/bytes	(f=func)	(see	pi?	and	pdi)

pm	[magic]							print	libmagic	data	(pm?	for	more	information)

pr	[len]									print	N	raw	bytes

p[kK]	[len]						print	key	in	randomart	(K	is	for	mosaic)

ps[pwz]	[len]				print	pascal/wide/zero-terminated	strings

pt[dn?]	[len]				print	different	timestamps

pu[w]	[len]						print	N	url	encoded	bytes	(w=wide)

pv[jh]	[mode]						bar|json|histogram	blocks	(mode:	e?search.in)

p[xX][owq]	[len]	hexdump	of	N	bytes	(o=octal,	w=32bit,	q=64bit)

pz	[len]									print	zoom	view	(see	pz?	for	help)

pwd														display	current	working	directory

Hexadecimal	View

	px		gives	a	user-friendly	output	showing	16	pairs	of	numbers	per	row	with	offsets	and	raw
representations:

[0x00404888]>	px

-	offset	-			0	1		2	3		4	5		6	7		8	9		A	B		C	D		E	F		0123456789ABCDEF

0x00404888		31ed	4989	d15e	4889	e248	83e4	f050	5449		1.I..^H..H...PTI

0x00404898		c7c0	4024	4100	48c7	c1b0	2341	0048	c7c7		..@$A.H...#A.H..

0x004048a8		d028	4000	e83f	dcff	fff4	6690	662e	0f1f		.(@..?....f.f...

Print	Modes

52

Show	Hexadecimal	Words	Dump	(32	bits)

[0x00404888]>	pxw

0x00404888		0x8949ed31	0x89485ed1	0xe48348e2	0x495450f0		1.I..^H..H...PTI

0x00404898		0x2440c0c7	0xc7480041	0x4123b0c1	0xc7c74800		..@$A.H...#A.H..

0x004048a8		0x004028d0	0xffdc3fe8	0x9066f4ff	0x1f0f2e66		.(@..?....f.f...

[0x00404888]>	e	cfg.bigendian

false

[0x00404888]>	e	cfg.bigendian	=	true

[0x00404888]>	pxw

0x00404888		0x31ed4989	0xd15e4889	0xe24883e4	0xf0505449		1.I..^H..H...PTI

0x00404898		0xc7c04024	0x410048c7	0xc1b02341	0x0048c7c7		..@$A.H...#A.H..

0x004048a8		0xd0284000	0xe83fdcff	0xfff46690	0x662e0f1f		.(@..?....f.f...

8	bits	Hexpair	List	of	Bytes

[0x00404888]>	p8	16

31ed4989d15e4889e24883e4f0505449

Show	Hexadecimal	Quad-words	Dump	(64	bits)

[0x08049A80]>	pxq

0x00001390		0x65625f6b63617473		0x646e6962006e6967			stack_begin.bind

0x000013a0		0x616d6f6474786574		0x7469727766006e69			textdomain.fwrit

0x000013b0		0x6b636f6c6e755f65		0x6d63727473006465			e_unlocked.strcm

...

Date/Time	Formats

Currently	supported	timestamp	output	modes	are:

[0x00404888]>	pt?

|Usage:	pt[dn?]

|	pt						print	unix	time	(32	bit	cfg.big_endian)

|	ptd					print	dos	time	(32	bit	cfg.big_endian)

|	ptn					print	ntfs	time	(64	bit	!cfg.big_endian)

|	pt?					show	help	message

For	example,	you	can	'view'	the	current	buffer	as	timestamps	in	the	ntfs	time:

Print	Modes

53

[0x08048000]>	eval	cfg.bigendian	=	false

[0x08048000]>	pt	4

29:04:32948	23:12:36	+0000

[0x08048000]>	eval	cfg.bigendian	=	true

[0x08048000]>	pt	4

20:05:13001	09:29:21	+0000

As	you	can	see,	the	endianness	affects	the	result.	Once	you	have	printed	a	timestamp,	you
can	grep	output,	for	example,	by	year	value:

[0x08048000]>	pt	|	grep	1974	|	wc	-l

15

[0x08048000]>	pt	|	grep	2022

27:04:2022	16:15:43	+0000

The	default	date	format	can	be	configured	using	the		cfg.datefmt		variable.	Formatting	rules
for	it	follow	the	well	known	strftime(3)	format.	An	excerpt	from	the	strftime(3)	manpage:

%a		The	abbreviated	name	of	the	day	of	the	week	according	to	the	current	locale.

%A		The	full	name	of	the	day	of	the	week	according	to	the	current	locale.

%b		The	abbreviated	month	name	according	to	the	current	locale.

%B		The	full	month	name	according	to	the	current	locale.

%c		The	preferred	date	and	time	representation	for	the	current	locale.

%C		The	century	number	(year/100)	as	a	2-digit	integer.	(SU)

%d		The	day	of	the	month	as	a	decimal	number	(range	01	to	31).

%D		Equivalent	to	%m/%d/%y.		(Yecch—for	Americans	only.		Americans	should	note	that	in

	other	countries	%d/%m/%y	is	rather	common.	This	means	that	in	international	context	t

his	format	is	ambiguous	and	should	not	be	used.)	(SU)

%e		Like	%d,	the	day	of	the	month	as	a	decimal	number,	but	a	leading	zero	is	replaced	

by	a	space.	(SU)

%E		Modifier:	use	alternative	format,	see	below.	(SU)

%F		Equivalent	to	%Y-%m-%d	(the	ISO	8601	date	format).	(C99)

%G		The	ISO	8601	week-based	year	(see	NOTES)	with	century	as	a	decimal	number.		The	4-

digit	year	corresponding	to	the	ISO	week	number	(see	%V).		This	has	the	same	format	an

d	value	as	%Y,	except	that	if	the	ISO	week	number	belongs	to	the	previous	or	next	year

,	that	year	is	used	instead.	(TZ)

%g		Like	%G,	but	without	century,	that	is,	with	a	2-digit	year	(00-99).	(TZ)

%h		Equivalent	to	%b.		(SU)

%H		The	hour	as	a	decimal	number	using	a	24-hour	clock	(range	00	to	23).

%I		The	hour	as	a	decimal	number	using	a	12-hour	clock	(range	01	to	12).

%j		The	day	of	the	year	as	a	decimal	number	(range	001	to	366).

%k		The	hour	(24-hour	clock)	as	a	decimal	number	(range	0	to	23);	single	digits	are	pr

eceded	by	a	blank.		(See	also	%H.)		(TZ)

%l		The	hour	(12-hour	clock)	as	a	decimal	number	(range	1	to	12);	single	digits	are	pr

eceded	by	a	blank.		(See	also	%I.)		(TZ)

%m		The	month	as	a	decimal	number	(range	01	to	12).

%M		The	minute	as	a	decimal	number	(range	00	to	59).

%n		A	newline	character.	(SU)

%O		Modifier:	use	alternative	format,	see	below.	(SU)

Print	Modes

54

%p		Either	"AM"	or	"PM"	according	to	the	given	time	value,	or	the	corresponding	string

s	for	the	current	locale.		Noon	is	treated	as	"PM"	and	midnight	as	"AM".

%P		Like	%p	but	in	lowercase:	"am"	or	"pm"	or	a	corresponding	string	for	the	current	l

ocale.	(GNU)

%r		The	time	in	a.m.	or	p.m.	notation.		In	the	POSIX	locale	this	is	equivalent	to	%I:%

M:%S	%p.		(SU)

%R		The	time	in	24-hour	notation	(%H:%M).		(SU)	For	a	version	including	the	seconds,	s

ee	%T	below.

%s		The	number	of	seconds	since	the	Epoch,	1970-01-01	00:00:00		+0000	(UTC).	(TZ)

%S		The	second	as	a	decimal	number	(range	00	to	60).		(The	range	is	up	to	60	to	allow	

for	occasional	leap	seconds.)

%t		A	tab	character.	(SU)

%T		The	time	in	24-hour	notation	(%H:%M:%S).		(SU)

%u		The	day	of	the	week	as	a	decimal,	range	1	to	7,	Monday	being	1.		See	also	%w.		(SU

)

%U		The	week	number	of	the	current	year	as	a	decimal	number,	range	00	to	53,	starting	

with	the	first	Sunday	as	the	first	day	of	week	01.		See	also	%V	and	%W.

%V		The	ISO	8601	week	number	(see	NOTES)	of	the	current	year	as	a	decimal	number,	rang

e	01	to	53,	where	week	1	is	the	first	week	that	has	at	least	4	days	in	the	new	year.		

See	also	%U	and	%W.(U)

%w		The	day	of	the	week	as	a	decimal,	range	0	to	6,	Sunday	being	0.		See	also	%u.

%W		The	week	number	of	the	current	year	as	a	decimal	number,	range	00	to	53,	starting	

with	the	first	Monday	as	the	first	day	of	week	01.

%x		The	preferred	date	representation	for	the	current	locale	without	the	time.

%X		The	preferred	time	representation	for	the	current	locale	without	the	date.

%y		The	year	as	a	decimal	number	without	a	century	(range	00	to	99).

%Y		The	year	as	a	decimal	number	including	the	century.

%z		The	+hhmm	or	-hhmm	numeric	timezone	(that	is,	the	hour	and	minute	offset	from	UTC)

.	(SU)

%Z		The	timezone	name	or	abbreviation.

%+		The	date	and	time	in	date(1)	format.	(TZ)	(Not	supported	in	glibc2.)

%%		A	literal	'%'	character.

Basic	Types

There	are	print	modes	available	for	all	basic	types.	If	you	are	interested	in	a	more	complex
structure,	just	type	:		pf?	.	The	list	of	the	print	modes	for	basic	types	(pf?):

Print	Modes

55

Usage:	pf[.key[.field[=value]]|[val]]|[times][format]	[arg0	arg1	...]

Examples:

		pf	10xiz	pointer	length	string

		pf	{array_size}b	@	array_base

		pf.													#	list	all	formats

		pf.obj	xxdz	prev	next	size	name

		pf.obj										#	run	stored	format

		pf.obj.name					#	show	string	inside	object

		pf.obj.size=33		#	set	new	size

	Format	chars:

		e	-	temporally	swap	endian

		f	-	float	value	(4	bytes)

		c	-	char	(signed	byte)

		b	-	byte	(unsigned)

		B	-	show	10	first	bytes	of	buffer

		i	-	%i	integer	value	(4	bytes)

		w	-	word	(2	bytes	unsigned	short	in	hex)

		q	-	quadword	(8	bytes)

		p	-	pointer	reference	(2,	4	or	8	bytes)

		d	-	0x%08x	hexadecimal	value	(4	bytes)

		D	-	disassemble	one	opcode

		x	-	0x%08x	hexadecimal	value	and	flag	(fd	@	addr)

		z	-	\0	terminated	string

		Z	-	\0	terminated	wide	string

		s	-	32bit	pointer	to	string	(4	bytes)

		S	-	64bit	pointer	to	string	(8	bytes)

		*	-	next	char	is	pointer	(honors	asm.bits)

		+	-	toggle	show	flags	for	each	offset

		:	-	skip	4	bytes

		.	-	skip	1	byte

Some	examples	are	below:

[0x4A13B8C0]>	pf	i

0x00404888	=	837634441

[0x4A13B8C0]>	pf

0x00404888	=	837634432.000000

High-level	Languages	Views

Valid	print	code	formats	for	human-readable	languages	are:

Print	Modes

56

pc					C

pcs				string

pcj				json

pcJ				javascript

pcp				python

pcw				words	(4	byte)

pcd				dwords	(8	byte)

[0xB7F8E810]>	pc	32

#define	_BUFFER_SIZE	32

unsigned	char	buffer[_BUFFER_SIZE]	=	{

0x89,	0xe0,	0xe8,	0x49,	0x02,	0x00,	0x00,	0x89,	0xc7,	0xe8,	0xe2,	0xff,	0xff,	0xff,	0x

81,	0xc3,	0xd6,	0xa7,	0x01,	0x00,	0x8b,	0x83,	0x00,	0xff,	0xff,	0xff,	0x5a,	0x8d,	0x24

,	0x84,	0x29,	0xc2	};

[0x7fcd6a891630]>	pcs

"\x48\x89\xe7\xe8\x68\x39\x00\x00\x49\x89\xc4\x8b\x05\xef\x16\x22\x00\x5a\x48\x8d\x24\

xc4\x29\xc2\x52\x48\x89\xd6\x49\x89\xe5\x48\x83\xe4\xf0\x48\x8b\x3d\x06\x1a

Strings

Strings	are	probably	one	of	the	most	important	entrypoints	when	starting	to	reverse	engineer
a	program,	because	they	usually	reference	information	about	functions'	actions	(asserts,
debug	or	info	messages...)	Therefore	radare	supports	various	string	formats:

[0x00000000]>	ps?

|Usage:	ps[zpw]	[N]Print	String

|	ps			print	string

|	psi		print	string	inside	curseek

|	psb		print	strings	in	current	block

|	psx		show	string	with	escaped	chars

|	psz		print	zero	terminated	string

|	psp		print	pascal	string

|	psu		print	utf16	unicode	(json)

|	psw		print	wide	string

|	psj		print	string	in	JSON	format

Most	strings	are	zero-terminated.	Here	is	an	example	by	using	the	debugger	to	continue	the
execution	of	a	program	until	it	executes	the	'open'	syscall.	When	we	recover	the	control	over
the	process,	we	get	the	arguments	passed	to	the	syscall,	pointed	by	%ebx.	In	the	case	of
the	'open'	call,	it	is	a	zero	terminated	string	which	we	can	inspect	using		psz	.

Print	Modes

57

[0x4A13B8C0]>	dcs	open

0x4a14fc24	syscall(5)	open	(0x4a151c91	0x00000000	0x00000000)	=	0xffffffda

[0x4A13B8C0]>	dr

		eax		0xffffffda				esi		0xffffffff				eip				0x4a14fc24

		ebx		0x4a151c91				edi		0x4a151be1				oeax			0x00000005

		ecx		0x00000000				esp		0xbfbedb1c				eflags	0x200246		

		edx		0x00000000				ebp		0xbfbedbb0				cPaZstIdor0	(PZI)

[0x4A13B8C0]>

[0x4A13B8C0]>	psz	@	0x4a151c91

/etc/ld.so.cache

Print	Memory	Contents

It	is	also	possible	to	print	various	packed	data	types	using	the		pf		command:

[0xB7F08810]>	pf	xxS	@	rsp

0x7fff0d29da30	=	0x00000001

0x7fff0d29da34	=	0x00000000

0x7fff0d29da38	=	0x7fff0d29da38	->	0x0d29f7ee	/bin/ls

This	can	be	used	to	look	at	the	arguments	passed	to	a	function.	To	achieve	this,	simply	pass
a	'format	memory	string'	as	an	argument	to		pf	,	and	temporally	change	current	seek
position	/	offset	using		@	.	It	is	also	possible	to	define	arrays	of	structures	with		pf	.	To	do
this,	prefix	the	format	string	with	a	numeric	value.	You	can	also	define	a	name	for	each	field
of	the	structure	by	appending	them	as	a	space-separated	arguments	list.

[0x4A13B8C0]>	pf	2*xw	pointer	type	@	esp

0x00404888	[0]	{

			pointer	:

(*0xffffffff8949ed31)						type	:	0x00404888	=	0x8949ed31

			0x00404890	=	0x48e2

}

0x00404892	[1]	{

(*0x50f0e483)				pointer	:	0x00404892	=	0x50f0e483

					type	:	0x0040489a	=	0x2440

}

A	practical	example	for	using		pf		on	a	binary	of	a	GStreamer	plugin:

Print	Modes

58

$	radare	~/.gstreamer-0.10/plugins/libgstflumms.so

[0x000028A0]>	seek	sym.gst_plugin_desc

[0x000185E0]>	pf	iissxsssss	major	minor	name	desc	_init	version	\

	license	source	package	origin

					major	:	0x000185e0	=	0

					minor	:	0x000185e4	=	10

						name	:	0x000185e8	=	0x000185e8	flumms

						desc	:	0x000185ec	=	0x000185ec	Fluendo	MMS	source

					_init	:	0x000185f0	=	0x00002940

			version	:	0x000185f4	=	0x000185f4	0.10.15.1

			license	:	0x000185f8	=	0x000185f8	unknown

				source	:	0x000185fc	=	0x000185fc	gst-fluendo-mms

			package	:	0x00018600	=	0x00018600	Fluendo	MMS	source

				origin	:	0x00018604	=	0x00018604	http://www.fluendo.com

Disassembly

The		pd		command	is	used	to	disassemble	code.	It	accepts	a	numeric	value	to	specify	how
many	instructions	should	be	disassembled.	The		pD		command	is	similar	but	instead	of	a
number	of	instructions,	it	decompiles	a	given	number	of	bytes.

	d	:	disassembly	N	opcodes			count	of	opcodes

	D	:	asm.arch	disassembler			bsize	bytes

	[0x00404888]>	pd	1

												;--	entry0:

												0x00404888				31ed									xor	ebp,	ebp

Selecting	Target	Architecture

The	architecture	flavor	for	disassembler	is	defined	by	the		asm.arch		eval	variable.	You	can
use		e	asm.arch	=	?		to	list	all	available	architectures.

Print	Modes

59

[0xB7F08810]>	e	asm.arch	=	?

_d		16									8051								PD						8051	Intel	CPU

_d		16	32						arc									GPL3				Argonaut	RISC	Core

ad		16	32	64			arm									GPL3				Acorn	RISC	Machine	CPU

_d		16	32	64			arm.cs						BSD					Capstone	ARM	disassembler

_d		16	32						arm.winedbg	LGPL2			WineDBG's	ARM	disassembler

_d		16	32						avr									GPL					AVR	Atmel

ad		32									bf										LGPL3			Brainfuck

_d		16									cr16								LGPL3			cr16	disassembly	plugin

_d		16									csr									PD						Cambridge	Silicon	Radio	(CSR)

ad		32	64						dalvik						LGPL3			AndroidVM	Dalvik

ad		16									dcpu16						PD						Mojang's	DCPU-16

_d		32	64						ebc									LGPL3			EFI	Bytecode

_d		8										gb										LGPL3			GameBoy(TM)	(z80-like)

_d		16									h8300							LGPL3			H8/300	disassembly	plugin

_d		8										i8080							BSD					Intel	8080	CPU

ad		32									java								Apache		Java	bytecode

_d		16	32						m68k								BSD					Motorola	68000

_d		32									malbolge				LGPL3			Malbolge	Ternary	VM

ad		32	64						mips								GPL3				MIPS	CPU

_d		16	32	64			mips.cs					BSD					Capstone	MIPS	disassembler

_d		16	32	64			msil								PD						.NET	Microsoft	Intermediate	Language

_d		32									nios2							GPL3				NIOS	II	Embedded	Processor

_d		32	64						ppc									GPL3				PowerPC

_d		32	64						ppc.cs						BSD					Capstone	PowerPC	disassembler

ad													rar									LGPL3			RAR	VM

_d		32									sh										GPL3				SuperH-4	CPU

_d		32	64						sparc							GPL3				Scalable	Processor	Architecture

_d		32									tms320						LGPLv3		TMS320	DSP	family

_d		32									ws										LGPL3			Whitespace	esotheric	VM

_d		16	32	64			x86									BSD					udis86	x86-16,32,64

_d		16	32	64			x86.cs						BSD					Capstone	X86	disassembler

a_		32	64						x86.nz						LGPL3			x86	handmade	assembler

ad		32									x86.olly				GPL2				OllyDBG	X86	disassembler

ad		8										z80									NC-GPL2	Zilog	Z80

Configuring	the	Disassembler

There	are	multiple	options	which	can	be	used	to	configure	the	output	of	disassembler.	All
these	options	are	described	in		e?	asm.	

Print	Modes

60

														asm.os:	Select	operating	system	(kernel)	(linux,	darwin,	w32,..)

											asm.bytes:	Display	the	bytes	of	each	instruction

						asm.cmtflgrefs:	Show	comment	flags	associated	to	branch	referece

								asm.cmtright:	Show	comments	at	right	of	disassembly	if	they	fit	in	screen

								asm.comments:	Show	comments	in	disassembly	view

										asm.decode:	Use	code	analysis	as	a	disassembler

											asm.dwarf:	Show	dwarf	comment	at	disassembly

												asm.esil:	Show	ESIL	instead	of	mnemonic

										asm.filter:	Replace	numbers	in	disassembly	using	flags	containing	a	dot	in	t

he	name	in	disassembly

											asm.flags:	Show	flags

										asm.lbytes:	Align	disasm	bytes	to	left

											asm.lines:	If	enabled	show	ascii-art	lines	at	disassembly

							asm.linescall:	Enable	call	lines

								asm.linesout:	If	enabled	show	out	of	block	lines

						asm.linesright:	If	enabled	show	lines	before	opcode	instead	of	offset

						asm.linesstyle:	If	enabled	iterate	the	jump	list	backwards

							asm.lineswide:	If	enabled	put	an	space	between	lines

										asm.middle:	Allow	disassembling	jumps	in	the	middle	of	an	instruction

										asm.offset:	Show	offsets	at	disassembly

										asm.pseudo:	Enable	pseudo	syntax

												asm.size:	Show	size	of	opcodes	in	disassembly	(pd)

								asm.stackptr:	Show	stack	pointer	at	disassembly

										asm.cycles:	Show	cpu-cycles	taken	by	instruction	at	disassembly

												asm.tabs:	Use	tabs	in	disassembly

											asm.trace:	Show	execution	traces	for	each	opcode

											asm.ucase:	Use	uppercase	syntax	at	disassembly

										asm.varsub:	Substitute	variables	in	disassembly

												asm.arch:	Set	the	arch	to	be	usedd	by	asm

										asm.parser:	Set	the	asm	parser	to	use

										asm.segoff:	Show	segmented	address	in	prompt	(x86-16)

													asm.cpu:	Set	the	kind	of	asm.arch	cpu

									asm.profile:	configure	disassembler	(default,	simple,	gas,	smart,	debug,	full

)

											asm.xrefs:	Show	xrefs	in	disassembly

							asm.functions:	Show	functions	in	disassembly

										asm.syntax:	Select	assembly	syntax

										asm.nbytes:	Number	of	bytes	for	each	opcode	at	disassembly

							asm.bytespace:	Separate	hex	bytes	with	a	whitespace

												asm.bits:	Word	size	in	bits	at	assembler

						asm.lineswidth:	Number	of	columns	for	program	flow	arrows

Disassembly	Syntax

The		asm.syntax		variable	is	used	to	change	flavor	of	assembly	syntax	used	by	a
disassembler	engine.	To	switch	between	Intel	and	AT&T	representations:

e	asm.syntax	=	intel

e	asm.syntax	=	att

Print	Modes

61

You	can	also	check		asm.pseudo	,	which	is	an	experimental	pseudocode	view,	and		asm.esil	
which	outputs	ESIL	('Evaluable	Strings	Intermedate	Language').	ESIL's	goal	is	to	have	a
human-readable	representation	of	every	opcode	semantics.	Such	representations	can	be
evaluated	(interpreted)	to	emulate	effects	of	individual	instructions.

Print	Modes

62

Flags
Flags	are	conceptually	similar	to	bookmarks.	They	associate	a	name	with	a	given	offset	in	a
file.	Flags	can	be	grouped	into	'flag	spaces'.	A	flag	space	is	a	namespace	for	flags,	grouping
together	flags	of	similar	characteristics	or	type.	Examples	for	flag	spaces:	sections,	registers,
symbols.

To	create	a	flag	type:

	[0x4A13B8C0]>	f	flag_name	@	offset

You	can	remove	a	flag	by	appending	the		-		character	to	command.	Most	commands	accept
	-		as	argument-prefix	as	an	indication	to	delete	something.

	[0x4A13B8C0]>	f-	flag_name

To	switch	between	or	create	new	flagspaces	use	the		fs		command:

	#	List	flag	spaces

	[0x4A13B8C0]>	fs

	00			symbols

	01			imports

	02			sections

	03			strings

	04			regs

	05			maps

	[0x4A13B8C0]>	fs	symbols	;	select	only	flags	in	symbols	flagspace

	[0x4A13B8C0]>	f										;	list	only	flags	in	symbols	flagspace

	[0x4A13B8C0]>	fs	*							;	select	all	flagspaces

	[0x4A13B8C0]>	f	myflag			;	create	a	new	flag	called	'myflag'

	[0x4A13B8C0]>	f-	myflag		;	delete	the	flag	called	'myflag'

You	can	rename	flags	with		fr	.

Flags

63

Writing	Data
Radare	can	manipulate	a	loaded	binary	file	in	many	ways.	You	can	resize	the	file,	move	and
copy/paste	bytes,	insert	new	bytes	(shifting	data	to	the	end	of	the	block	or	file),	or	simply
overwrite	bytes.	New	data	may	be	give	as	a	widestring,	as	assembler	instructions,	or	the
data	may	be	read	in	from	another	file.

Resize	the	file	using	the		r		command.	It	accepts	a	numeric	argument.	A	positive	value	sets
a	new	size	for	the	file.	A	negative	one	will	truncate	the	file	to	the	current	seek	position	minus
N	bytes.

r	1024						;	resize	the	file	to	1024	bytes

r	-10	@	33		;	strip	10	bytes	at	offset	33

Write	bytes	using	the		w		command.	It	accepts	multiple	input	formats	like	inline	assembly,
endian-friendly	dwords,	files,	hexpair	files,	wide	strings:

[0x00404888]>	w?

|Usage:	w[x]	[str]	[<file]	[<<EOF]	[@addr]

|	w	foobar					write	string	'foobar'

|	wh	r2								whereis/which	shell	command

|	wr	10								write	10	random	bytes

|	ww	foobar				write	wide	string	'f\x00o\x00o\x00b\x00a\x00r\x00'

|	wa	push	ebp		write	opcode,	separated	by	';'	(use	'"'	around	the	command)

|	waf	file					assemble	file	and	write	bytes

|	wA	r	0							alter/modify	opcode	at	current	seek	(see	wA?)

|	wb	010203				fill	current	block	with	cyclic	hexpairs

|	wc[ir*?]					write	cache	undo/commit/reset/list	(io.cache)

|	wx	9090						write	two	intel	nops

|	wv	eip+34				write	32-64	bit	value

|	wo?	hex						write	in	block	with	operation.	'wo?'	fmi

|	wm	f0ff						set	binary	mask	hexpair	to	be	used	as	cyclic	write	mask

|	ws	pstring			write	1	byte	for	length	and	then	the	string

|	wf	-|file				write	contents	of	file	at	current	offset

|	wF	-|file				write	contents	of	hexpairs	file	here

|	wp	-|file				apply	radare	patch	file.	See	wp?	fmi

|	wt	file	[sz]	write	to	file	(from	current	seek,	blocksize	or	sz	bytes)

Some	examples:

	[0x00000000]>	wx	123456	@	0x8048300

	[0x00000000]>	wv	0x8048123	@	0x8049100

	[0x00000000]>	wa	jmp	0x8048320

Write

64

Write	Over

The		wo		command	(write	over)	has	many	subcommands,	each	combines	the	existing	data
with	the	new	data	using	an	operator.	The	command	is	applied	to	the	current	block.
Supported	operators	include:	XOR,	ADD,	SUB...

[0x4A13B8C0]>	wo?

|Usage:	wo[asmdxoArl24]	[hexpairs]	@	addr[:bsize]

|Example:

|		wox	0x90			;	xor	cur	block	with	0x90

|		wox	90					;	xor	cur	block	with	0x90

|		wox	0x0203	;	xor	cur	block	with	0203

|		woa	02	03		;	add	[0203][0203][...]	to	curblk

|		woe	02	03		

|Supported	operations:

|		wow		==		write	looped	value	(alias	for	'wb')

|		woa		+=		addition

|		wos		-=		substraction

|		wom		*=		multiply

|		wod		/=		divide

|		wox		^=		xor

|		woo		|=		or

|		woA		&=		and

|		woR		random	bytes	(alias	for	'wr	$b'

|		wor		>>=	shift	right

|		wol		<<=	shift	left

|		wo2		2=		2	byte	endian	swap

|		wo4		4=		4	byte	endian	swap

It	is	possible	to	implement	cipher-algorithms	using	radare	core	primitives	and		wo	.	A	sample
session	performing	xor(90)	+	add(01,	02):

Write

65

[0x7fcd6a891630]>	px

-	offset	-							0	1		2	3		4	5		6	7		8	9		A	B		C	D		E	F		0123456789ABCDEF

0x7fcd6a891630		4889	e7e8	6839	0000	4989	c48b	05ef	1622		H...h9..I......"

0x7fcd6a891640		005a	488d	24c4	29c2	5248	89d6	4989	e548		.ZH.$.).RH..I..H

0x7fcd6a891650		83e4	f048	8b3d	061a	2200	498d	4cd5	1049		...H.=..".I.L..I

0x7fcd6a891660		8d55	0831	ede8	06e2	0000	488d	15cf	e600		.U.1......H.....

[0x7fcd6a891630]>	wox	90

[0x7fcd6a891630]>	px

-	offset	-							0	1		2	3		4	5		6	7		8	9		A	B		C	D		E	F		0123456789ABCDEF

0x7fcd6a891630		d819	7778	d919	541b	90ca	d81d	c2d8	1946		..wx..T........F

0x7fcd6a891640		1374	60d8	b290	d91d	1dc5	98a1	9090	d81d		.t`.............

0x7fcd6a891650		90dc	197c	9f8f	1490	d81d	95d9	9f8f	1490		...|............

0x7fcd6a891660		13d7	9491	9f8f	1490	13ff	9491	9f8f	1490	

[0x7fcd6a891630]>	woa	01	02

[0x7fcd6a891630]>	px

-	offset	-							0	1		2	3		4	5		6	7		8	9		A	B		C	D		E	F		0123456789ABCDEF

0x7fcd6a891630		d91b	787a	91cc	d91f	1476	61da	1ec7	99a3		..xz.....va.....

0x7fcd6a891640		91de	1a7e	d91f	96db	14d9	9593	1401	9593		...~............

0x7fcd6a891650		c4da	1a6d	e89a	d959	9192	9159	1cb1	d959		...m...Y...Y...Y

0x7fcd6a891660		9192	79cb	81da	1652	81da	1456	a252	7c77		..y....R...V.R|w

Write

66

Zoom
The	zoom	is	a	print	mode	that	allows	you	to	get	a	global	view	of	the	whole	file	or	a	memory
map	on	a	single	screen.	In	this	mode,	each	byte	represents		file_size/block_size		bytes	of
the	file.	Use	the		pO		(zoom	out	print	mode)	to	enter	this	mode,	or	just	toggle		z		in	the	visual
mode	to	zoom-out/zoom-in.

The	cursor	can	be	used	to	scroll	faster	through	the	zoom	out	view.	Pressing		z		again	will
zoom-in	where	at	new	cursor	position.

[0x004048c5]>	pz?

|Usage:	pz	[len]	print	zoomed	blocks	(filesize/N)

|	e	zoom.maxsz		max	size	of	block

|	e	zoom.from			start	address

|	e	zoom.to					end	address

|	e	zoom.byte			specify	how	to	calculate	each	byte

|	pzp											number	of	printable	chars

|	pzf											count	of	flags	in	block

|	pzs											strings	in	range

|	pz0											number	of	bytes	with	value	'0'

|	pzF											number	of	bytes	with	value	0xFF

|	pze											calculate	entropy	and	expand	to	0-255	range

|	pzh											head	(first	byte	value);	This	is	the	default	mode

Let's	see	some	examples:

Zoom

67

[0x08049790]>	pz	//	or	default	pzh

0x00000000		7f00	0000	e200	0000	146e	6f74	0300	0000	not....

0x00000010		0000	0000	0068	2102	00ff	2024	e8f0	007a	h!...	$...z

0x00000020		8c00	18c2	ffff	0080	4421	41c4	1500	5dff	D!A...].

0x00000030		ff10	0018	0fc8	031a	000c	8484	e970	8648	p.H

0x00000040		d68b	3148	348b	03a0	8b0f	c200	5d25	7074		..1H4.......]%pt

0x00000050		7500	00e1	ffe8	58fe	4dc4	00e0	dbc8	b885		u.....X.M.......

[0x08049790]>	e	zoom.byte=p

[0x08049790]>	pO	//	or	pzp

0x00000000		2f47	0609	070a	0917	1e9e	a4bd	2a1b	2c27		/G..........*.,'

0x00000010		322d	5671	8788	8182	5679	7568	82a2	7d89		2-Vq....Vyuh..}.

0x00000020		8173	7f7b	727a	9588	a07b	5c7d	8daf	836d		.s.{rz...{\}...m

0x00000030		b167	6192	a67d	8aa2	6246	856e	8c9b	999f		.ga..}..bF.n....

0x00000040		a774	96c3	b1a4	6c8e	a07c	6a8f	8983	6a62		.t....l..|j...jb

0x00000050		7d66	625f	7ea4	7ea6	b4b6	8b57	a19f	71a2		}fb_~.~....W..q.

[0x08049790]>	eval	zoom.byte	=	flags

[0x08049790]>	pO	//	or	pzf

0x00406e65		48d0	80f9	360f	8745	ffff	ffeb	ae66	0f1f		H...6..E.....f..

0x00406e75		4400	0083	f801	0f85	3fff	ffff	410f	b600		D.......?...A...

0x00406e85		3c78	0f87	6301	0000	0fb6	c8ff	24cd	0026		<x..c.......$..&

0x00406e95		4100	660f	1f84	0000	0000	0084	c074	043c		A.f..........t.<

0x00406ea5		3a75	18b8	0500	0000	83f8	060f	95c0	e9cd		:u..............

0x00406eb5		feff	ff0f	1f84	0000	0000	0041	8801	4983	A..I.

0x00406ec5		c001	4983	c201	4983	c101	e9ec	feff	ff0f		..I...I.........

[0x08049790]>	e	zoom.byte=F

[0x08049790]>	pO	//	or	pzF

0x00000000		0000	0000	0000	0000	0000	0000	0000	0000	

0x00000010		0000	2b5c	5757	3a14	331f	1b23	0315	1d18		..+\WW:.3..#....

0x00000020		222a	2330	2b31	2e2a	1714	200d	1512	383d		"*#0+1.*..	...8=

0x00000030		1e1a	181b	0a10	1a21	2a36	281e	1d1c	0e11	!*6(.....

0x00000040		1b2a	2f22	2229	181e	231e	181c	1913	262b		.*/"")..#.....&+

0x00000050		2b30	4741	422f	382a	1e22	0f17	0f10	3913		+0GAB/8*."....9.

You	can	limit	zooming	to	a	range	of	bytes	instead	of	the	whole	bytespace.	Change
	zoom.from		and		zoom.to		eval	variables:

[0x465D8810]>	e	zoom.

zoom.byte	=	f

zoom.from	=	0

zoom.maxsz	=	512

zoom.to	=	118368???

Zoom

68

Zoom

69

Yank/Paste
You	can	yank/paste	bytes	in	visual	mode	using	the		y		and		Y		key	bindings	which	are
aliases	for		y		and		yy		commands	of	command-line	interface.	These	commands	operate	on
an	internal	buffer	which	stores	copies	of	bytes	taken	starting	from	the	current	seek	position.
You	can	write	this	buffer	back	to	different	seek	position	using		yy		command:

[0x00000000]>	y?

|Usage:	y[ptxy]	[len]	[[@]addr]

|	y																show	yank	buffer	information	(srcoff	len	bytes)

|	y	16													copy	16	bytes	into	clipboard

|	y	16	0x200							copy	16	bytes	into	clipboard	from	0x200

|	y	16	@	0x200					copy	16	bytes	into	clipboard	from	0x200

|	yp															print	contents	of	clipboard

|	yx															print	contents	of	clipboard	in	hexadecimal

|	yt	64	0x200						copy	64	bytes	from	current	seek	to	0x200

|	yf	64	0x200	file	copy	64	bytes	from	0x200	from	file	(opens	w/	io),	use	-1	for	all	by

tes

|	yfa	file	copy				copy	all	bytes	from	from	file	(opens	w/	io)

|	yy	0x3344								paste	clipboard

Sample	session:

[0x00000000]>	s	0x100				;	seek	at	0x100

[0x00000100]>	y	100						;	yanks	100	bytes	from	here

[0x00000200]>	s	0x200				;	seek	0x200

[0x00000200]>	yy									;	pastes	100	bytes

You	can	perform	a	yank	and	paste	in	a	single	line	by	just	using	the		yt		command	(yank-to).
The	syntax	is	as	follows:

[0x4A13B8C0]>	x

			offset			0	1		2	3		4	5		6	7		8	9		A	B		0123456789AB

0x4A13B8C0,	89e0	e839	0700	0089	c7e8	e2ff	...9........

0x4A13B8CC,	ffff	81c3	eea6	0100	8b83	08ff

0x4A13B8D8,	ffff	5a8d	2484	29c2											..Z.$.).				

[0x4A13B8C0]>	yt	8	0x4A13B8CC	@	0x4A13B8C0

[0x4A13B8C0]>	x

			offset			0	1		2	3		4	5		6	7		8	9		A	B		0123456789AB

0x4A13B8C0,	89e0	e839	0700	0089	c7e8	e2ff	...9........

0x4A13B8CC,	89e0	e839	0700	0089	8b83	08ff	...9........

0x4A13B8D8,	ffff	5a8d	2484	29c2											..Z.$.).				

Yank/Paste

70

Yank/Paste

71

Comparing	Bytes
	c		(short	for	"compare")	allows	you	to	compare	arrays	of	bytes	from	different	sources.	The
command	accepts	input	in	a	number	of	formats,	and	then	compares	it	against	values	found
at	current	seek	position.

[0x00404888]>	c?

|Usage:	c[?dfx]	[argument]

|	c		[string]				Compares	a	plain	with	escaped	chars	string

|	cc	[at]	[(at)]	Compares	in	two	hexdump	columns	of	block	size

|	c4	[value]					Compare	a	doubleword	from	a	math	expression

|	c8	[value]					Compare	a	quadword	from	a	math	expression

|	cx	[hexpair]			Compare	hexpair	string

|	cX	[addr]						Like	'cc'	but	using	hexdiff	output

|	cf	[file]						Compare	contents	of	file	at	current	seek

|	cg[o]	[file]			Graphdiff	current	file	and	[file]

|	cu	[addr]	@at		Compare	memory	hexdumps	of	$$	and	dst	in	unified	diff

|	cw[us?]	[...]		Compare	memory	watchers

|	cat		[file]				Show	contents	of	file	(see	pwd,	ls)

|	cl|cls|clear			Clear	screen,	(clear0	to	goto	0,	0	only)

To	compare	memory	contents	at	current	seek	position	against	given	string	of	values,	use
	cx	:

[0x08048000]>	p8	4

7f	45	4c	46	

[0x08048000]>	cx	7f	45	90	46

Compare	3/4	equal	bytes

0x00000002	(byte=03)			90	'	'		->		4c	'L'

[0x08048000]>	

Another	subcommand	of		c		command	is		cc		which	stands	for	"compare	code".	To	compare
a	byte	sequence	with	a	sequence	in	memory:

[0x4A13B8C0]>	cc	0x39e8e089	@	0x4A13B8C0

To	compare	contents	of	two	functions	specified	by	their	names:

[0x08049A80]>	cc	sym.main2	@	sym.main

Comparing	Bytes

72

	c8		compares	a	quadword	from	the	current	seek	(in	the	example	below,	0x00000000)
against	a	math	expression:

[0x00000000]>	c8	4

Compare	1/8	equal	bytes	(0%)

0x00000000	(byte=01)			7f	'	'		->		04	'	'

0x00000001	(byte=02)			45	'E'		->		00	'	'

0x00000002	(byte=03)			4c	'L'		->		00	'	'

The	number	parameter	can	of	course	also	be	a	math	expressions	which	uses	flag	names
etc:

[0x00000000]>	cx	7f469046

Compare	2/4	equal	bytes

0x00000001	(byte=02)			45	'E'		->		46	'F'

0x00000002	(byte=03)			4c	'L'		->		90	'	'

You	can	use	the	compare	command	to	find	differences	between	a	current	block	and	a	file
previously	dumped	to	a	disk:

r2	/bin/true

[0x08049A80]>	s	0

[0x08048000]>	cf	/bin/true

Compare	512/512	equal	bytes

Comparing	Bytes

73

Visual	Mode
The	visual	mode	is	a	more	user-friendly	interface	alternative	to	radare2's	command-line
prompt.	It	uses	HJKL	or	arrow	keys	to	move	around	data	and	code,	has	a	cursor	mode	for
selecting	bytes,	and	offers	numerous	key	bindings	to	simplify	debugger	use.	To	enter	visual
mode,	use		V		command.	To	exit	from	it	back	to	command	line,	press		q	.

print	modes	aka	Panels
The	Visual	mode	uses	"print	modes"	which	are	basically	different	panel	that	you	can	rotate.
By	default	those	are:

↻	Hexdump	panel	->	Disassembly	panel	→	Debugger	panel	→	Hexadecimal	words
dump	panel	→	Output	C	format	panel	→	Op	analysis	color	map	panel	→	Annotated
hexdump	panel	↺.

Notice	that	the	top	of	the	panel	contains	the	command	which	is	used,	for	example	for	the
disassembly	panel:

[0x00404890	16%	120	/bin/ls]>	pd	$r	@	entry0

Visual	mode

74

Getting	Help
To	see	help	on	all	key	bindings	defined	for	visual	mode,	press		?	:

Visual	mode

75

Visual	mode	help:

	?								show	this	help	or	manpage	in	cursor	mode

	&								rotate	asm.bits	between	supported	8,	16,	32,	64

	%								in	cursor	mode	finds	matching	pair,	otherwise	toggle	autoblocksz

	@								set	cmd.vprompt	to	run	commands	before	the	visual	prompt

	!								enter	into	the	visual	panels	mode

	_								enter	the	hud

	=								set	cmd.vprompt	(top	row)

	|								set	cmd.cprompt	(right	column)

	.								seek	to	program	counter

	/								in	cursor	mode	search	in	current	block

	:cmd					run	radare	command

	;[-]cmt		add/remove	comment

	/*+-[]			change	block	size,	[]	=	resize	hex.cols

	>||<					seek	aligned	to	block	size

	a/A						(a)ssemble	code,	visual	(A)ssembler

	b								toggle	breakpoint

	c/C						toggle	(c)ursor	and	(C)olors

	d[f?]				define	function,	data,	code,	..

	D								enter	visual	diff	mode	(set	diff.from/to)

	e								edit	eval	configuration	variables

	f/F						set/unset	or	browse	flags.	f-	to	unset,	F	to	browse,	..

	gG							go	seek	to	begin	and	end	of	file	(0-$s)

	hjkl					move	around	(or	HJKL)	(left-down-up-right)

	i								insert	hex	or	string	(in	hexdump)	use	tab	to	toggle

	mK/'K				mark/go	to	Key	(any	key)

	M								walk	the	mounted	filesystems

	n/N						seek	next/prev	function/flag/hit	(scr.nkey)

	o								go/seek	to	given	offset

	O								toggle	asm.esil

	p/P						rotate	print	modes	(hex,	disasm,	debug,	words,	buf)

	q								back	to	radare	shell

	r								browse	anal	info	and	comments

	R								randomize	color	palette	(ecr)

	sS							step	/	step	over

	T								enter	textlog	chat	console	(TT)

	uU							undo/redo	seek

	v								visual	code	analysis	menu

	V								(V)iew	graph	using	cmd.graph	(agv?)

	wW							seek	cursor	to	next/prev	word

	xX							show	xrefs/refs	of	current	function	from/to	data/code

	yY							copy	and	paste	selection

	z								toggle	zoom	mode

	Enter				follow	address	of	jump/call

Function	Keys:	(See	'e	key.'),	defaults	to:

		F2						toggle	breakpoint

		F7						single	step

		F8						step	over

		F9						continue

Visual	mode

76

Visual	mode

77

Visual	Disassembly

Navigation
Move	within	the	Disassembly	using		arrows		or		hjkl	.	Use		o		to	seek	directly	to	a	flag	or	an
offset,	type	it	when	requested	by	the	prompt:		[offset]>	.	Follow	a	jump	or	a	call	using	the
	number		of	your	keyboard		[0-9]		and	the	number	on	the	right	in	disassembly	to	follow	a	call
or	a	jump.	In	this	example	typing		1		on	the	keyboard	would	follow	the	call	to
	sym.imp.__libc_start_main		and	therefore,	seek	at	the	offset	of	this	symbol.

												0x00404894						e857dcffff					call	sym.imp.__libc_start_main	;[1]

Seek	back	to	the	previous	location	using		u	,		U		will	allow	you	to	redo	the	seek.

	d		as	define
	d		can	be	used	to	change	the	type	of	data	of	the	current	block,	several	basic
types/structures	are	available	as	well	as	more	advanced	one	using		pf		template:

d	→	...

0x004048f7						48c1e83f							shr	rax,	0x3f																																										

							

d	→	b

0x004048f7	.byte	0x48					

d	→	B

0x004048f7	.word	0xc148																																																															

							

d	→	d

0x004048f7	hex	length=165	delta=0																																																					

							

0x004048f7		48c1	e83f	4801	c648	d1fe	7415	b800	0000		H..?H..H..t.....																	

																			

...

To	improve	code	readability	you	can	change	how	radare2	presents	numerical	values	in
disassembly,	by	default	most	of	disassembly	display	numerical	value	as	hexadecimal.
Sometimes	you	would	like	to	view	it	as	a	decimal,	binary	or	even	custom	defined	constant.
To	change	value	format	you	can	use		d		following	by		i		then	choose	what	base	to	work	in,
this	is	the	equivalent	to		ahi	:

Visual	Disassembly

78

d	→	i	→	...

0x004048f7						48c1e83f							shr	rax,	0x3f																																										

							

d	→	i	→		10

0x004048f7						48c1e83f							shr	rax,	63																																												

							

d	→	i	→		2

0x004048f7						48c1e83f							shr	rax,	'?'

Usage	of	the	Cursor	for	Inserting/Patching...

Remember	that,	to	be	able	to	actually	edit	files	loaded	in	radare2,	you	have	to	start	it	with
the		-w		option.	Otherwise	a	file	is	opened	in	read-only	mode.

Pressing	lowercase		c		toggles	the	cursor	mode.	When	this	mode	is	active,	the	currently
selected	byte	(or	byte	range)	is	highlighted.

The	cursor	is	used	to	select	a	range	of	bytes	or	simply	to	point	to	a	byte.	You	can	use	the
cursor	to	create	a	named	flag	at	specifc	location.	To	do	so,	seek	to	the	required	position,
then	press		f		and	enter	a	name	for	a	flag.	If	the	file	was	opened	in	write	mode	using	the		-
w		flag	or	the		o+		command,	you	can	also	use	the	cursor	to	overwrite	a	selected	range	with
new	values.	To	do	so,	select	a	range	of	bytes	(with	HJKL	and	SHIFT	key	pressed),	then
press		i		and	enter	the	hexpair	values	for	the	new	data.	The	data	will	be	repeated	as
needed	to	fill	the	range	selected.	For	example:

<select	10	bytes	in	visual	mode	using	SHIFT+HJKL>

<press	'i'	and	then	enter	'12	34'>

The	10	bytes	you	have	selected	will	be	changed	to	"12	34	12	34	12	...".

The	Visual	Assembler	is	a	feature	that	provides	a	live-preview	while	you	type	in	new
opcodes	to	patch	into	the	disassembly.	To	use	it,	seek	or	place	the	cursor	at	the	wanted
location	and	hit	the	'A'	key.	To	provide	multiple	opcodes,	seperate	them	with	a	semicolon,
	;	.

Visual	Disassembly

79

XREF
When	radare2	has	discovered	a	XREF	during	the	analysis,	it	will	show	you	the	information	in
the	Visual	Disassembly	using		XREF		tag:

												;	DATA	XREF	from	0x00402e0e	(unk)

												str.David_MacKenzie:

To	see	where	this	string	is	called	press		x	,	if	you	want	to	jump	to	the	location	where	the
data	is	used	then	press	the	corresponding	number	[0-9]	on	your	keyboard.	(This	functionality
is	similar	to		axt)

	X		corresponds	to	the	reverse	operation	aka		axf	.

Add	a	comment
To	add	a	comment	press		;	.

Type	other	commands
Quickly	type	commands	using		:	.

Search
	/	:	allows	highlighting	of	strings	in	the	current	display.		:cmd		allows	you	to	use	one	of	the
"/?"	commands	that	perform	more	specialized	searches.

The	HUDS

The	"UserFriendly	HUD"

The	"UserFriendly	HUD"	can	be	accessed	using	the		??		key-combination.	This	HUD	acts	as
an	interactive	Cheat	Sheet	that	one	can	use	to	more	easily	find	and	execute	commands.
This	HUD	is	particularly	useful	for	new-comers.	For	experienced	users,	the	other	HUDS
which	are	more	activity-specific	may	be	more	useful.

The	"flag/comment/functions/..	HUD"

Visual	Disassembly

80

This	HUD	can	be	displayed	using	the		_		key,	it	shows	a	list	of	all	the	flags	defined	and	lets
you	jump	to	them.	Using	the	keyboard	you	can	quickly	filter	the	list	down	to	a	flag	that
contains	a	specific	pattern.

Tweaking	the	Disassembly
The	disassembly's	look-and-feel	is	controlled	using	the	"asm.*	configuration	keys,	which	can
be	changed	using	the		e		command.	All	configuration	keys	can	also	be	edited	through	the
Visual	Configuration	Editor.

Visual	Configuration	Editor
This	HUD	can	be	accessed	using	the		e		key	in	visual	mode.	The	editor	allows	you	to	easily
examine	and	change	radare2's	configuration.	For	example,	if	you	want	to	change	something
about	the	disassembly	display,	select		asm		from	the	list,	navigate	to	the	item	you	wish	to
modify	it,	then	select	it	by	hitting		Enter	.	If	the	item	is	a	boolean	variable,	it	will	toggle,
otherwise	you	will	be	prompted	to	provide	a	new	value.

Visual	Disassembly

81

Example	switch	to	pseudo	disassembly:

Visual	Disassembly

82

Visual	Disassembly

83

Following	are	some	example	of	eval	variable	related	to	disassembly.

Examples

asm.arch:	Change	Architecture	&&	asm.bits:	Word	size	in
bits	at	assembler

You	can	view	the	list	of	all	arch	using		e	asm.arch=?	

Visual	Disassembly

84

e	asm.arch	=	dalvik

												0x00404870						31ed4989							cmp-long	v237,	v73,	v137																			

						

												0x00404874						d15e4889							rsub-int	v14,	v5,	0x8948

												0x00404878						e24883e4							ushr-int/lit8	v72,	v131,	0xe4

												0x0040487c						f0505449c7c0			+invoke-object-init-range	{},	method+18772	

;[0]

												0x00404882						90244100							add-int	v36,	v65,	v0

e	asm.bits	=	16																																			

												0000:4870						31ed											xor	bp,	bp																																		

												0000:4872						49													dec	cx

												0000:4873						89d1											mov	cx,	dx	

												0000:4875						5e													pop	si

												0000:4876						48													dec	ax	

												0000:4877						89e2											mov	dx,	sp

This	latest	operation	can	also	be	done	using		&		in	Visual	mode.

asm.pseudo:	Enable	pseudo	syntax

e	asm.pseudo	=	true																																			

												0x00404870						31ed											ebp	=	0																														

												0x00404872						4989d1									r9	=	rdx

												0x00404875						5e													pop	rsi

												0x00404876						4889e2									rdx	=	rsp

												0x00404879						4883e4f0							rsp	&=	0xfffffffffffffff0

asm.syntax:	Select	assembly	syntax	(intel,	att,	masm...)

e	asm.syntax	=	att

												0x00404870						31ed											xor	%ebp,	%ebp

												0x00404872						4989d1									mov	%rdx,	%r9	

												0x00404875						5e													pop	%rsi						

												0x00404876						4889e2									mov	%rsp,	%rdx

												0x00404879						4883e4f0							and	$0xfffffffffffffff0,	%rsp

asm.describe:	Show	opcode	description

Visual	Disassembly

85

e	asm.describe	=	true

												0x00404870						31ed											xor	ebp,	ebp																;	logical	exclu

sive	or

												0x00404872						4989d1									mov	r9,	rdx																	;	moves	data	fr

om	src	to	dst

												0x00404875						5e													pop	rsi																					;	pops	last	ele

ment	of	stack	and	stores	the	result	in	argument

												0x00404876						4889e2									mov	rdx,	rsp																;	moves	data	fr

om	src	to	dst								

												0x00404879						4883e4f0							and	rsp,	0xfffffffffffffff0	;	binary	and	op

eration	between	src	and	dst,	stores	result	on	dst

Visual	Disassembly

86

Searching	for	Bytes
The	radare2	search	engine	is	based	on	work	done	by	esteve,	plus	multiple	features
implemented	on	top	of	it.	It	supports	multiple	keyword	searches,	binary	masks,	and
hexadecimal	values.	It	automatically	creates	flags	for	search	hit	locations	ease	future
referencing.

Search	is	initiated	by		/		command.

[0x00000000]>	/?

Usage:	/[amx/]	[arg]

/	foo\x00							search	for	string	`foo\0`

/w	foo										search	for	wide	string	`f\0o\0o\0`

/wi	foo									search	for	wide	string	ignoring	case	`f\0o\0o\0`

/!	ff											search	for	first	occurrence	not	matching

/i	foo										search	for	string	`foo`	ignoring	case

/e	/E.F/i							match	regular	expression

/x	ff0033							search	for	hex	string

/x	ff..33							search	for	hex	string	ignoring	some	nibbles

/x	ff43	ffd0				search	for	hexpair	with	mask

/d	101112							search	for	a	deltified	sequence	of	bytes

/!x	00										inverse	hexa	search	(find	first	byte	!=	0x00)

/c	jmp	[esp]				search	for	asm	code	(see	search.asmstr)

/a	jmp	eax						assemble	opcode	and	search	its	bytes

/A														search	for	AES	expanded	keys

/r	sym.printf			analyze	opcode	reference	an	offset

/R														search	for	ROP	gadgets

/P														show	offset	of	previous	instruction

/m	magicfile				search	for	matching	magic	file	(use	blocksize)

/p	patternsize		search	for	pattern	of	given	size

/z	min	max						search	for	strings	of	given	size

/v[?248]	num				look	for	a	asm.bigendian	32bit	value

//														repeat	last	search

/b														search	backwards

Because	everything	is	treated	as	a	file	in	radare2,	it	does	not	matter	whether	you	search	in	a
socket,	a	remote	device,	in	process	memory,	or	a	file.

Searching	bytes

87

Basic	Search
A	basic	search	for	a	plain	text	string	in	a	file	would	be	something	like:

$	r2	-q	-c	"/	lib"	/bin/ls

Searching	3	bytes	from	0x00400000	to	0x0041ae08:	6c	69	62	

hits:	9

0x00400239	hit0_0	"lib64/ld-linux-x86-64.so.2"

0x00400f19	hit0_1	"libselinux.so.1"

0x00400fae	hit0_2	"librt.so.1"

0x00400fc7	hit0_3	"libacl.so.1"

0x00401004	hit0_4	"libc.so.6"

0x004013ce	hit0_5	"libc_start_main"

0x00416542	hit0_6	"libs/"

0x00417160	hit0_7	"lib/xstrtol.c"

0x00417578	hit0_8	"lib"

As	can	be	seen	from	the	output	above,	radare2	generates	a	"hit"	flag	for	every	entry	found.
You	can	then	use	the		ps		command	to	see	the	strings	stored	at	the	offsets	marked	by	the
flags	in	this	group,	athey	ll	haves	names	of	the	form		hit0_<index>	:

[0x00404888]>	/	ls

...

[0x00404888]>	ps	@	hit0_0

lseek

You	can	search	for	wide-char	strings	(e.g.,	unicode	letters)	using	the		/w		command:

[0x00000000]>	/w	Hello

0	results	found.

To	perform	a	case-insensitive	search	for	strings	use		/i	:

[0x0040488f]>	/i	Stallman

Searching	8	bytes	from	0x00400238	to	0x0040488f:	53	74	61	6c	6c	6d	61	6e

[#]hits:	004138	<	0x0040488f		hits	=	0

It	is	possible	to	specify	hexadecimal	escape	sequences	in	the	search	string	by	prepending
them	with	"\x":

[0x00000000]>	/	\x7FELF

Basic	Searches

88

But,	if	you	are	searching	for	a	string	of	hexadecimal	values,	you're	probably	better	of	using
the		/x		command:

[0x00000000]>	/x	7F454C46

Once	the	search	is	done,	the	results	are	stored	in	the		searches		flag	space.

[0x00000000]>	fs

0				0	.	strings

1				0	.	symbols

2				6	.	searches

[0x00000000]>	f

0x00000135	512	hit0_0

0x00000b71	512	hit0_1

0x00000bad	512	hit0_2

0x00000bdd	512	hit0_3

0x00000bfb	512	hit0_4

0x00000f2a	512	hit0_5

To	remove	"hit"	flags	after	you	do	not	need	them	anymore,	use	the		f-	hit*		command.

Often,	during	long	search	sessions,	you	will	need	to	launch	the	latest	search	more	than
once.	You	can	use	the		//		command	to	repeat	the	last	search.

[0x00000f2a]>	//					;	repeat	last	search

Basic	Searches

89

Configuring	Search	Options
The	radare2	search	engine	can	be	configured	through	several	configuration	variables,
modifiable	with	the		e		command.

e	cmd.hit	=	x									;	radare2	command	to	execute	on	every	search	hit

e	search.distance	=	0	;	search	string	distance

e	search.in	=	[foo]			;	search	scope	limit.	Supported	values:	raw,	block,	file,	sectio

n

e	search.align	=	4				;	only	show	search	results	aligned	by	specified	boundary.

e	search.from	=	0					;	start	address

e	search.to	=	0							;	end	address

e	search.asmstr	=	0			;	search	for	string	instead	of	assembly

e	search.flags	=	true	;	if	enabled,	create	flags	on	hits

The		search.align		variable	is	used	to	limit	valid	search	hits	to	certain	alignment.	For
example,	with		e	search.align=4		you	will	see	only	hits	found	at	4-bytes	aligned	offsets.

The		search.flags		boolean	variable	instructs	the	search	engine	to	flag	hits	so	that	they	can
be	referenced	later.	If	a	currently	running	search	is	interrupted	with		Ctrl-C		keyboard
sequence,	current	search	position	is	flagged	with	"search_stop".

Configurating	the	Search

90

Pattern	Matching	Search
The		/p		command	allows	you	to	apply	repeated	pattern	searches	on	IO	backend	storage.	It
is	possible	to	identify	repeated	byte	sequences	without	explicitly	specifying	them.	The	only
command's	parameter	sets	minimum	detectable	pattern	length.	Here	is	an	example:

[0x00000000]>	/p	10

This	command	output	will	show	different	patterns	found	and	how	many	times	each	of	them	is
encountered.

Pattern	Search

91

Search	Automation
The		cmd.hit		eval	variable	is	used	to	define	a	radare2	command	to	be	executed	when	a
matching	entry	is	found	by	the	search	engine.	If	you	want	to	run	several	commands,
separate	them	with		;	.	Alternatively,	you	can	arrange	them	in	a	separate	script,	and	then
invoke	it	as	a	whole	with		.	script-file-name		command.	For	example:

[0x00404888]>	e	cmd.hit	=	p8	8

[0x00404888]>	/	lib

Searching	3	bytes	from	0x00400000	to	0x0041ae08:	6c	69	62	

hits:	9

0x00400239	hit4_0	"lib64/ld-linux-x86-64.so.2"

31ed4989d15e4889

0x00400f19	hit4_1	"libselinux.so.1"

31ed4989d15e4889

0x00400fae	hit4_2	"librt.so.1"

31ed4989d15e4889

0x00400fc7	hit4_3	"libacl.so.1"

31ed4989d15e4889

0x00401004	hit4_4	"libc.so.6"

31ed4989d15e4889

0x004013ce	hit4_5	"libc_start_main"

31ed4989d15e4889

0x00416542	hit4_6	"libs/"

31ed4989d15e4889

0x00417160	hit4_7	"lib/xstrtol.c"

31ed4989d15e4889

0x00417578	hit4_8	"lib"

31ed4989d15e4889

Automation

92

Searching	Backwards
To	search	backwards,	use	the		/b		command.

Backward	Search

93

Assembler	Search
If	you	want	to	search	for	a	certain	assembler	opcodes,	you	can	either	use		/c		or		/a	
commands.

The	command		/c	jmp	[esp]		searches	for	the	specified	asm	mnemonic:

[0x00404888]>	/c	jmp	qword	[rdx]

f	hit_0	@	0x0040e50d			#	2:	jmp	qword	[rdx]

f	hit_1	@	0x00418dbb			#	2:	jmp	qword	[rdx]

f	hit_2	@	0x00418fcb			#	3:	jmp	qword	[rdx]

f	hit_3	@	0x004196ab			#	6:	jmp	qword	[rdx]

f	hit_4	@	0x00419bf3			#	3:	jmp	qword	[rdx]

f	hit_5	@	0x00419c1b			#	3:	jmp	qword	[rdx]

f	hit_6	@	0x00419c43			#	3:	jmp	qword	[rdx]

The	command		/a	jmp	eax		assembles	a	string	to	machine	code,	and	then	searches	for	the
resulting	bytes:

[0x00404888]>	/a	jmp	eax

hits:	1

0x004048e7	hit3_0	ffe00f1f8000000000b8

Search	in	Assembly

94

Searching	for	AES	Keys
Thanks	to	Victor	Muñoz,	radare2	now	has	support	of	the	algorithm	he	developed,	capable	of
finding	expanded	AES	keys	with		/Ca		command.	It	searches	from	current	seek	position	up
to	the		search.distance		limit,	or	until	end	of	file	is	reached.	You	can	interrupt	current	search
by	pressing		Ctrl-C	.	For	example,	to	look	for	AES	keys	in	physical	memory	of	your	system:

$	sudo	r2	/dev/mem

[0x00000000]>	/Ca

0	AES	keys	found

Searching	for	AES	Keys

95

Disassembling
Disassembling	in	radare	is	just	a	way	to	represent	an	array	of	bytes.	It	is	handled	as	a
special	print	mode	within		p		command.

In	the	old	times,	when	the	radare	core	was	smaller,	the	disassembler	was	handled	by	an
external	rsc	file.	That	is,	radare	first	dumped	current	block	into	a	file,	and	then	simply	called
	objdump		configured	to	disassemble	for	Intel,	ARM	etc...	It	was	a	working	solution,	but	it	was
inefficient	as	it	repeated	the	same	actions	over	and	over,	because	there	were	no	caches.	As
a	result,	scrolling	was	terribly	slow.	Nowadays,	the	disassembler	support	is	one	of	the	basic
features	of	radare.	It	now	has	many	options,	including	target	architecture	flavor	and
disassembler	variants,	among	other	things.

To	see	the	disassembly,	use	the		pd		command.	It	accepts	a	numeric	argument	to	specify
how	many	opcodes	of	current	block	you	want	to	see.	Most	of	the	commands	in	radare
consider	the	current	block	size	as	the	default	limit	for	data	input.	If	you	want	to	disassemble
more	bytes,	set	a	new	block	size	using	the		b		command.

[0x00000000]>	b	100				;	set	block	size	to	100

[0x00000000]>	pd							;	disassemble	100	bytes

[0x00000000]>	pd	3					;	disassemble	3	opcodes

[0x00000000]>	pD	30				;	disassemble	30	bytes

The		pD		command	works	like		pd		but	accepts	the	number	of	input	bytes	as	its	argument,
instead	of	the	number	of	opcodes.

The	"pseudo"	syntax	may	be	somewhat	easier	for	a	human	to	understand	than	the	default
assembler	notations.	But	it	can	become	annoying	if	you	read	lots	of	code.	To	play	with	it:

Disassembling

96

[0x00405e1c]>	e	asm.pseudo	=	true

[0x00405e1c]>	pd	3

										;	JMP	XREF	from	0x00405dfa	(fcn.00404531)

										0x00405e1c				488b9424a80.	rdx	=	[rsp+0x2a8]

										0x00405e24				64483314252.	rdx	^=	[fs:0x28]

										0x00405e2d				4889d8							rax	=	rbx

[0x00405e1c]>	e	asm.syntax	=	intel

[0x00405e1c]>	pd	3

										;	JMP	XREF	from	0x00405dfa	(fcn.00404531)

										0x00405e1c				488b9424a80.	mov	rdx,	[rsp+0x2a8]

										0x00405e24				64483314252.	xor	rdx,	[fs:0x28]

										0x00405e2d				4889d8							mov	rax,	rbx

[0x00405e1c]>	e	asm.syntax=att

[0x00405e1c]>	pd	3

										;	JMP	XREF	from	0x00405dfa	(fcn.00404531)

										0x00405e1c				488b9424a80.	mov	0x2a8(%rsp),	%rdx

										0x00405e24				64483314252.	xor	%fs:0x28,	%rdx

										0x00405e2d				4889d8							mov	%rbx,	%rax

Disassembling

97

Adding	Metadata	to	Disassembly
The	typical	work	involved	in	reversing	binary	files	makes	powerful	annotation	capabailities
essential.	Radare	offers	multiple	ways	to	store	and	retrieve	such	metadata.

By	following	common	basic	*NIX	principles,	it	is	easy	to	write	a	small	utility	in	a	scripting
language	which	uses		objdump	,		otool	,	etc.	to	obtain	information	from	a	binary	and	to
import	it	into	radare.	For	example,	take	a	look	at	one	of	many	scripts	that	are	distributed	with
radare,	e.g.,		idc2r.py	.	To	use	it,	invoke	it	as		idc2r.py	file.idc	>	file.r2	.	It	reads	an	IDC
file	exported	from	an	IDA	Pro	database	and	produces	an	r2	script	containing	the	same
comments,	names	of	functions	etc.	You	can	import	the	resulting	'file.r2'	by	using	the	dot		.	
command	of	radare:

	[0x00000000]>	.	file.r2

The		.		command	is	used	to	interpret	Radare	commands	from	external	sources,	including
files	and	program	output.	For	example,	to	omit	generation	of	an	intermediate	file	and	import
the	script	directly	you	can	use	this	combination:

	[0x00000000]>	.!idc2r.py	<	file.idc

The		C		command	is	used	to	manage	comments	and	data	conversions.	You	can	define	a
range	of	program's	bytes	to	be	interpreted	as	either	code,	binary	data	or	string.	It	is	also
possible	to	execute	external	code	at	every	specified	flag	location	in	order	to	fetch	some
metadata,	such	as	a	comment,	from	an	external	file	or	database.

Here's	the	help:

Adding	Metadata

98

[0x00404cc0]>	C?

|Usage:	C[-LCvsdfm?]	[...]

|	C*																														List	meta	info	in	r2	commands

|	C-	[len]	[@][addr]													delete	metadata	at	given	address	range

|	CL[-]	[addr|file:line	[addr]]		show	'code	line'	information	(bininfo)

|	Cl		file:line	[addr]												add	comment	with	line	information

|	CC[-]	[comment-text]				add/remove	comment.	Use	CC!	to	edit	with	$EDITOR

|	CCa[-at]|[at]	[text]				add/remove	comment	at	given	address

|	Cv[-]	offset	reg	name			add	var	substitution

|	Cs[-]	[size]	[[addr]]			add	string

|	Ch[-]	[size]	[@addr]				hide	data

|	Cd[-]	[size]												hexdump	data

|	Cf[-]	[sz]	[fmt..]						format	memory	(see	pf?)

|	Cm[-]	[sz]	[fmt..]						magic	parse	(see	pm?)

[0x00404cc0]>

[0x00000000]>	CCa	0x0000002	this	guy	seems	legit

[0x00000000]>	pd	2

											0x00000000				0000									add	[rax],	al

			;						this	guy	seems	legit

											0x00000002				0000									add	[rax],	al

The		C?		family	of	commands	lets	you	mark	a	range	as	one	of	several	kinds	of	types.	Three
basic	types	are:	code	(disassembly	is	done	using	asm.arch),	data	(an	array	of	data
elements)	or	string.	Use	the		Cs		comand	to	define	a	string,	use	the		Cd		command	for
defining	an	array	of	data	elements,	and	use	the		Cf		command	to	define	more	complex	data
structures	like	structs.

Annotating	data	types	is	most	easily	done	in	visual	mode,	using	the	"d"	key,	short	for	"data
type	change".	To	First,	use	the	cursor	to	select	a	range	of	bytes	(press		c		key	to	toggle
cursor	mode	and	use	HJKL	keys	to	expand	selection),	then	press	'd'	to	get	a	menu	of
possible	actions/types.	For	example,	to	mark	the	range	as	a	string,	use	the	's'	option	from
the	menu.	You	can	achieve	the	same	result	from	the	shell	using	the		Cs		command:

	[0x00000000]>	f	string_foo	@	0x800

	[0x00000000]>	Cs	10	@	string_foo

The		Cf		command	is	used	to	define	a	memory	format	string	(the	same	used	by	the		pf	
command).	Here's	a	example:

Adding	Metadata

99

		[0x7fd9f13ae630]>	Cf	16	2xi	foo	bar

		[0x7fd9f13ae630]>	pd

														;--	rip:

														0x7fd9f13ae630	format	2xi	foo	bar	{

		0x7fd9f13ae630	[0]	{

					foo	:	0x7fd9f13ae630	=	0xe8e78948

					bar	:	0x7fd9f13ae634	=	14696

		}

		0x7fd9f13ae638	[1]	{

					foo	:	0x7fd9f13ae638	=	0x8bc48949

					bar	:	0x7fd9f13ae63c	=	571928325

		}

		}	16

														0x7fd9f13ae633				e868390000			call	0x7fd9f13b1fa0

																	0x7fd9f13b1fa0()	;	rip

														0x7fd9f13ae638				4989c4							mov	r12,	rax

It	is	possible	to	define	structures	with	simple	oneliners.	See	'print	memory'	for	more
information.

All	these	"C*"	commands	can	also	be	accessed	from	the	visual	mode	by	pressing	'd'	(data
conversion)	key.

Adding	Metadata

100

ESIL
ESIL	stands	for	'Evaluable	Strings	Intermediate	Language'.	It	aims	to	describe	a	Forth)-like
representation	for	every	target	CPU	opcode	semantics.	ESIL	representations	can	be
evaluated	(interpreted)	in	order	to	emulate	individual	instructions.	Each	command	of	an	ESIL
expression	is	separated	by	a	comma.	Its	virtual	machine	can	be	described	as	this:

			while	((word=haveCommand()))	{

					if	(word.isOperator())	{

							esilOperators[word](esil);

					}	else	{

							esil.push	(word);

					}

					nextCommand();

			}

As	we	can	see	ESIL	uses	a	stack-based	interpreter	similar	to	what	is	commonly	used	for
calculators.	You	have	two	categories	of	inputs:	values	and	operators.	A	value	simply	gets
pushed	on	the	stack,	an	operator	then	pops	values	(its	arguments	if	you	will)	off	the	stack,
performs	its	operation	and	pushes	its	results	(if	any)	back	on.	We	can	think	of	ESIL	as	a
post-fix	notation	of	the	operations	we	want	to	do.

So	let's	see	an	example:

4,esp,-=,ebp,esp,=[4]

Can	you	guess	what	this	is?	If	we	take	this	post-fix	notation	and	transform	it	back	to	in-fix	we
get

esp	-=	4

4bytes(dword)	[esp]	=	ebp

We	can	see	that	this	corresponds	to	the	x86	instruction		push	ebp	!	Isn't	that	cool?	The	aim	is
to	be	able	to	express	most	of	the	common	operations	performed	by	CPUs,	like	binary
arithmetic	operations,	memory	loads	and	stores,	processing	syscalls	etc.	This	way	if	we	can
transform	the	instructions	to	ESIL	we	can	see	what	a	program	does	while	it	is	running	even
for	the	most	cryptic	architectures	you	definitely	don't	have	a	device	to	debug	on	for.

Use	ESIL

ESIL

101

https://en.wikipedia.org/wiki/Forth_(programming_language

Using	visual	mode	is	great	to	inspect	the	esil	evaluations.

There	are	2	environment	variables	that	are	important	for	watching	what	a	program	does:

			[0x00000000]>	e	asm.emu	=	true

			[0x00000000]>	e	asm.emustr	=	true

"asm.emu"	tells	r2	if	you	want	ESIL	information	to	be	displayed.	If	it	is	set	to	true	you	will	see
comments	appear	to	the	right	of	your	disassembly	that	tell	you	how	the	contents	of	registers
and	memory	addresses	are	changed	by	the	current	instruction.	For	example	if	you	have	an
instruction	that	subtracts	a	value	from	a	register	it	tells	you	what	the	value	was	before	and
what	it	becomes	after.	This	is	super	useful	so	you	don't	have	to	sit	there	yourself	and	track
which	value	goes	where.

One	problem	with	this	is	that	it	is	a	lot	of	information	to	take	in	at	once	and	sometimes	you
simply	don't	need	it.	r2	has	a	nice	compromise	for	this.	That	is	what	the	"asm.emustr"
variable	is	for.	Instead	of	this	super	verbose	output	with	every	register	value,	this	only	adds
really	useful	information	to	the	output,	e.g.,	strings	that	are	found	at	addresses	a	program
uses	or	whether	a	jump	is	likely	to	be	taken	or	not.

The	third	important	variable	is	"asm.esil".	This	switches	your	disassembly	to	no	longer	show
you	the	actual	disassembled	instructions,	but	instead	now	shows	you	corresponding	ESIL
expressions	that	describe	what	the	instruction	does.	So	if	you	want	to	take	a	look	at	how
instructions	are	expressed	in	ESIL	simply	set	"asm.esil"	to	true.

			[0x00000000]>	e	asm.esil	=	true

In	visual	mode	you	can	also	toggle	this	by	simply	typing		O	.

ESIL	Commands
"ae"	:	Evaluate	ESIL	expression.

[0x00000000]>	"ae	1,1,+"

0x2

[0x00000000]>

"aes"	:	ESIL	Step.

[0x00000000]>	aes

[0x00000000]>10aes

ESIL

102

"aeso"	:	ESIL	Step	Over.

[0x00000000]>	aeso

[0x00000000]>10aeso

"aesu"	:	ESIL	Step	Until.

[0x00001000]>	aesu	0x1035

ADDR	BREAK

[0x00001019]>

"ar"	:	Show/modify	ESIL	registry

[0x00001ec7]>	ar	r_00	=	0x1035

[0x00001ec7]>	ar	r_00

0x00001035

[0x00001019]>

ESIL	Instruction	Set

Here	is	the	complete	instruction	set	used	by	the	ESIL	VM:

ESIL
Opcode Operands Name Operation example

TRAP src Trap Trap	signal

$ src Syscall syscall

$$ src Instruction
address

Get	address	of
current	instruction
stack=instruction
address

== src,dst Compare

stack	=	(dst	==
src)	;
update_eflags(dst
-	src)

< src,dst
Smaller
(signed
comparison)

stack	=	(dst	<	src)
;
update_eflags(dst
-	src)

[0x0000000]>	"ae	1,5,
<"	
0x0
[0x00000000]>	"ae
5,5"
0x0"

Smaller	or
Equal

stack	=	(dst	<=
src)	;

[0x0000000]>	"ae	1,5,
<"	
0x0

ESIL

103

(signed
comparison)

update_eflags(dst
-	src)

[0x00000000]>	"ae
5,5"
0x1"

> src,dst
Bigger
(signed
comparison)

stack	=	(dst	>	src)
;
update_eflags(dst
-	src)

[0x00000000]>	"ae
1,5,>"
0x1
[0x00000000]>	"ae
5,5,>"
0x0

>= src,dst

Bigger	or
Equal
(signed
comparison)

stack	=	(dst	>=
src)	;
update_eflags(dst
-	src)

[0x00000000]>	"ae
1,5,>="
0x1
[0x00000000]>	"ae
5,5,>="
0x1

<< src,dst Shift	Left stack	=	dst	<<	src

[0x00000000]>	"ae
1,1,<<"
0x2
[0x00000000]>	"ae
2,1,<<"
0x4

>> src,dst Shift	Right stack	=	dst	>>	src

[0x00000000]>	"ae
1,4,>>"
0x2
[0x00000000]>	"ae
2,4,>>"
0x1

<<< src,dst Rotate	Left stack=dst	ROL
src

[0x00000000]>	"ae
31,1,<<<"
0x80000000
[0x00000000]>	"ae
32,1,<<<"
0x1

>>> src,dst Rotate
Right

stack=dst	ROR
src

[0x00000000]>	"ae
1,1,>>>"
0x80000000
[0x00000000]>	"ae
32,1,>>>"
0x1

& src,dst AND stack	=	dst	&	src

[0x00000000]>	"ae
1,1,&"
0x1
[0x00000000]>	"ae
1,0,&"
0x0
[0x00000000]>	"ae
0,1,&"
0x0

ESIL

104

0x0
[0x00000000]>	"ae
0,0,&"
0x0

` ` src,dst OR stack	=	dst	`

^ src,dst XOR stack	=	dst	^src

[0x00000000]>	"ae
1,1,^"
0x0
[0x00000000]>	"ae
1,0,^"
0x1
[0x00000000]>	"ae
0,1,^"
0x1
[0x00000000]>	"ae
0,0,^"
0x0

+ src,dst ADD stack	=	dst	+	src

[0x00000000]>	"ae
3,4,+"
0x7
[0x00000000]>	"ae
5,5,+"
0xa

- src,dst SUB stack	=	dst	-	src

[0x00000000]>	"ae
3,4,-"
0x1
[0x00000000]>	"ae
5,5,-"
0x0
[0x00000000]>	"ae
4,3,-"
0xffffffffffffffff

	*	 src,dst MUL stack	=	dst	*	src

[0x00000000]>	"ae
3,4,	*	"
0xc
[0x00000000]>	"ae
5,5,	*	"
0x19

/ src,dst DIV stack	=	dst	/	src

[0x00000000]>	"ae
2,4,/"
0x2
[0x00000000]>	"ae
5,5,/"
0x1
[0x00000000]>	"ae
5,9,/"
0x1

ESIL

105

% src,dst MOD stack	=	dst	%	src

2,4,%"
0x0
[0x00000000]>	"ae
5,5,%"
0x0
[0x00000000]>	"ae
5,9,%"
0x4

! src NEG stack	=	!!!src

[0x00000000]>	"ae	1,!"
0x0
[0x00000000]>	"ae	4,!"
0x0
[0x00000000]>	"ae	0,!"
0x1

++ src INC stack	=	src++

[0x00000000]>	ar
r_00=0;ar	r_00
0x00000000
[0x00000000]>	"ae
r_00,++"
0x1
[0x00000000]>	ar	r_00
0x00000000
[0x00000000]>	"ae
1,++"
0x2

-- src DEC stack	=	src--

[0x00000000]>	ar
r_00=5;ar	r_00
0x00000005
[0x00000000]>	"ae
r_00,--"
0x4
[0x00000000]>	ar	r_00
0x00000005
[0x00000000]>	"ae	5,--
"
0x4

+= src,reg ADD	eq reg	=	reg	+	src

[0x00000000]>	ar
r_01=5;ar	r_00=0;ar
r_00
0x00000000
[0x00000000]>	"ae
r_01,r_00,+="
[0x00000000]>	ar	r_00
0x00000005
[0x00000000]>	"ae
5,r_00,+="
[0x00000000]>	ar	r_00
0x0000000a

[0x00000000]>	"ae

ESIL

106

-= src,reg SUB	eq reg	=	reg	-	src

r_01,r_00,-="
[0x00000000]>	ar	r_00
0x00000004
[0x00000000]>	"ae
3,r_00,-="
[0x00000000]>	ar	r_00
0x00000001

	*=	 src,reg MUL	eq reg	=	reg	*	src

[0x00000000]>	ar
r_01=3;ar	r_00=5;ar
r_00
0x00000005
[0x00000000]>	"ae
r_01,r_00,	*	="
[0x00000000]>	ar	r_00
0x0000000f
[0x00000000]>	"ae
2,r_00,	*	="
[0x00000000]>	ar	r_00
0x0000001e

/= src,reg DIV	eq reg	=	reg	/	src

[0x00000000]>	ar
r_01=3;ar	r_00=6;ar
r_00
0x00000006
[0x00000000]>	"ae
r_01,r_00,/="
[0x00000000]>	ar	r_00
0x00000002
[0x00000000]>	"ae
1,r_00,/="
[0x00000000]>	ar	r_00
0x00000002

%= src,reg MOD	eq reg	=	reg	%	src

[0x00000000]>	ar
r_01=3;ar	r_00=7;ar
r_00
0x00000007
[0x00000000]>	"ae
r_01,r_00,%="
[0x00000000]>	ar	r_00
0x00000001
[0x00000000]>	ar
r_00=9;ar	r_00
0x00000009
[0x00000000]>	"ae
5,r_00,%="
[0x00000000]>	ar	r_00
0x00000004

[0x00000000]>	ar
r_00=1;ar	r_01=1;ar
r_01

ESIL

107

<<= src,reg Shift	Left	eq reg	=	reg	<<	src
[0x00000000]>	"ae
r_00,r_01,<<="
[0x00000000]>	ar	r_01
0x00000002
[0x00000000]>	"ae
2,r_01,<<="
[0x00000000]>	ar	r_01
0x00000008

>>= src,reg Shift	Right
eq reg	=	reg	<<	src

[0x00000000]>	ar
r_00=1;ar	r_01=8;ar
r_01
0x00000008
[0x00000000]>	"ae
r_00,r_01,>>="
[0x00000000]>	ar	r_01
0x00000004
[0x00000000]>	"ae
2,r_01,>>="
[0x00000000]>	ar	r_01
0x00000001

&= src,reg AND	eq reg	=	reg	&	src

[0x00000000]>	ar
r_00=2;ar	r_01=6;ar
r_01
0x00000006
[0x00000000]>	"ae
r_00,r_01,&="
[0x00000000]>	ar	r_01
0x00000002
[0x00000000]>	"ae
2,r_01,&="
[0x00000000]>	ar	r_01
0x00000002
[0x00000000]>	"ae
1,r_01,&="
[0x00000000]>	ar	r_01
0x00000000

` `= src,reg OR	eq reg	=	reg	`

^= src,reg XOR	eq reg	=	reg	^	src

[0x00000000]>	ar
r_00=2;ar
r_01=0xab;ar	r_01
0x000000ab
[0x00000000]>	"ae
r_00,r_01,^="
[0x00000000]>	ar	r_01
0x000000a9

ESIL

108

0x000000a9
[0x00000000]>	"ae
2,r_01,^="
[0x00000000]>	ar	r_01
0x000000ab

++= reg INC	eq reg	=	reg	+	1

[0x00000000]>	ar
r_00=4;ar	r_00
0x00000004
[0x00000000]>	"ae
r_00,++="
[0x00000000]>	ar	r_00
0x00000005

--= reg DEC	eq reg	=	reg	-	1

[0x00000000]>	ar
r_00=4;ar	r_00
0x00000004
[0x00000000]>	"ae
r_00,--="
[0x00000000]>	ar	r_00
0x00000003

!= reg NOT	eq reg	=	!reg

[0x00000000]>	ar
r_00=4;ar	r_00
0x00000004
[0x00000000]>	"ae
r_00,!="
[0x00000000]>	ar	r_00
0x00000000
[0x00000000]>	"ae
r_00,!="
[0x00000000]>	ar	r_00
0x00000001

--- --- --- --- ------------------------------

=[]
=[*]
=[1]
=[2]
=[4]
=[8]

src,dst poke *dst=src

[0x00010000]>	"ae
0xdeadbeef,0x10000,=
[4],"
[0x00010000]>	pxw
4@0x10000
0x00010000
0xdeadbeef
[0x00010000]>	"ae
0x0,0x10000,=[4],"
[0x00010000]>	pxw
4@0x10000
0x00010000
0x00000000

[]
[*]

[0x00010000]>	w
test@0x10000
[0x00010000]>	"ae
0x10000,[4],"

ESIL

109

[2]
[4]
[8]

src peek stack=*src [0x00010000]>	ar
r_00=0x10000
[0x00010000]>	"ae
r_00,[4],"
0x74736574

` 	=[]
	 	=[1]
	 	=[2]
	 	=[4]
	

SWAP Swap Swap	two	top
elements SWAP

PICK n Pick
Pick	nth	element
from	the	top	of
the	stack

2,PICK

RPICK m Reverse
Pick

Pick	nth	element
from	the	base	of
the	stack

0,RPICK

DUP Duplicate Duplicate	top
element	in	stack DUP

NUM Numeric

If	top	element	is	a
reference
(register	name,
label,	etc),
dereference	it
and	push	its	real
value

NUM

CLEAR Clear Clear	stack CLEAR

BREAK Break Stops	ESIL
emulation BREAK

GOTO n Goto Jumps	to	Nth
ESIL	word GOTO	5

TODO To	Do

Stops	execution
(reason:	ESIL
expression	not
completed)

TODO

ESIL	Flags

ESIL	VM	has	an	internal	state	flags	that	are	read	only	and	can	be	used	to	export	those
values	to	the	underlying	target	CPU	flags.	It	is	because	the	ESIL	VM	always	calculates	all
flag	changes,	while	target	CPUs	only	update	flags	under	certain	conditions	or	at	specific
instructions.

Internal	flags	are	prefixed	with		$		character.

ESIL

110

z						-	zero	flag,	only	set	if	the	result	of	an	operation	is	0

b						-	borrow,	this	requires	to	specify	from	which	bit	(example:	$b4	-	checks	if	bor

row	from	bit	4)

c						-	carry,	same	like	above	(example:	$c7	-	checks	if	carry	from	bit	7)

p						-	parity

r						-	regsize	(asm.bits/8)

[0-9]*	-	Used	to	set	flags	and	registers	without	having	any	side	effects,

									i.e.	setting	esil_cur,	esil_old	and	esil_lastsz.

									(example:	"$0,of,="	to	reset	the	overflow	flag)

Syntax	and	Commands
A	target	opcode	is	translated	into	a	comma	separated	list	of	ESIL	expressions.

xor	eax,	eax				->				0,eax,=,1,zf,=

Memory	access	is	defined	by	brackets	operation:

mov	eax,	[0x80480]			->			0x80480,[],eax,=

Default	operand	size	is	determined	by	size	of	operation	destination.

movb	$0,	0x80480					->			0,0x80480,=[1]

The		?		operator	uses	the	value	of	its	argument	to	decide	whether	to	evaluate	the
expression	in	curly	braces.

1.	 Is	the	value	zero?	->	Skip	it.
2.	 Is	the	value	non-zero?	->	Evaluate	it.

cmp	eax,	123		->			123,eax,==,$z,zf,=

jz	eax								->			zf,?{,eax,eip,=,}

If	you	want	to	run	several	expressions	under	a	conditional,	put	them	in	curly	braces:

zf,?{,eip,esp,=[],eax,eip,=,$r,esp,-=,}

Whitespaces,	newlines	and	other	chars	are	ignored.	So	the	first	thing	when	processing	a
ESIL	program	is	to	remove	spaces:

ESIL

111

esil	=	r_str_replace	(esil,	"	",	"",	R_TRUE);

Syscalls	need	special	treatment.	They	are	indicated	by	'$'	at	the	beginning	of	an	expression.
You	can	pass	an	optional	numeric	value	to	specify	a	number	of	syscall.	An	ESIL	emulator
must	handle	syscalls.	See	(r_esil_syscall).

Arguments	Order	for	Non-associative
Operations
As	discussed	on	IRC,	current	implementation	works	like	this:

a,b,-						b	-	a

a,b,/=					b	/=	a

This	approach	is	more	readable,	but	it	is	less	stack-friendly.

Special	Instructions

NOPs	are	represented	as	empty	strings.	As	it	was	said	previously,	syscalls	are	marked	by	'$'
command.	For	example,	'0x80,$'.	It	delegates	emulation	from	the	ESIL	machine	to	a
callback	which	implements	syscalls	for	a	specific	OS/kernel.

Traps	are	implemented	with	the		<code>,TRAP		command.	They	are	used	to	throw	exceptions
for	invalid	instructions,	division	by	zero,	memory	read	error,	etc.

Quick	Analysis

Here	is	a	list	of	some	quick	checks	to	retrieve	information	from	an	ESIL	string.	Relevant
information	will	be	probably	found	in	the	first	expression	of	the	list.

ESIL

112

indexOf('[')							->				have	memory	references

indexOf("=[")						->				write	in	memory

indexOf("pc,=")				->				modifies	program	counter	(branch,	jump,	call)

indexOf("sp,=")				->				modifies	the	stack	(what	if	we	found	sp+=	or	sp-=?)

indexOf("=")							->				retrieve	src	and	dst

indexOf(":")							->				unknown	esil,	raw	opcode	ahead

indexOf("$")							->				accesses	internal	esil	vm	flags	ex:	$z

indexOf("$")							->				syscall	ex:	1,$

indexOf("TRAP")				->				can	trap

indexOf('++')						->				has	iterator

indexOf('--')						->				count	to	zero

indexOf("?{")						->				conditional

equalsTo("")							->				empty	string,	means:	nop	(wrong,	if	we	append	pc+=x)

Common	operations:

Check	dstreg
Check	srcreg
Get	destinaion
Is	jump
Is	conditional
Evaluate
Is	syscall

CPU	Flags

CPU	flags	are	usually	defined	as	single	bit	registers	in	the	RReg	profile.	They	and
sometimes	found	under	the	'flg'	register	type.

Variables

Properties	of	the	VM	variables:

1.	 They	have	no	predefined	bit	width.	This	way	it	should	be	easy	to	extend	them	to	128,
256	and	512	bits	later,	e.g.	for	MMX,	SSE,	AVX,	Neon	SIMD.

2.	 There	can	be	unbound	number	of	variables.	It	is	done	for	SSA-form	compatibility.

3.	 Register	names	have	no	specific	syntax.	They	are	just	strings.

4.	 Numbers	can	be	specified	in	any	base	supported	by	RNum	(dec,	hex,	oct,	binary	...)

5.	 Each	ESIL	backend	should	have	an	associated	RReg	profile	to	describe	the	ESIL
register	specs.

ESIL

113

Bit	Arrays

What	to	do	with	them?	What	about	bit	arithmetics	if	use	variables	instead	of	registers?

Arithmetics

1.	 ADD	("+")
2.	 MUL	("*")
3.	 SUB	("-")
4.	 DIV	("/")
5.	 MOD	("%")

Bit	Arithmetics

1.	 AND	"&"
2.	 OR	"|"
3.	 XOR	"^"
4.	 SHL	"<<"
5.	 SHR	">>"
6.	 ROL	"<<<"
7.	 ROR	">>>"
8.	 NEG	"!"

Floating	Point	Support

TODO

Handling	x86	REP	Prefix	in	ESIL

ESIL	specifies	that	the	parsing	control-flow	commands	must	be	uppercase.	Bear	in	mind	that
some	architectures	have	uppercase	register	names.	The	corresponding	register	profile
should	take	care	not	to	reuse	any	of	the	following:

3,SKIP			-	skip	N	instructions.	used	to	make	relative	forward	GOTOs

3,GOTO			-	goto	instruction	3

LOOP					-	alias	for	0,GOTO

BREAK				-	stop	evaluating	the	expression

STACK				-	dump	stack	contents	to	screen

CLEAR				-	clear	stack

Usage	example:

ESIL

114

rep	cmpsb
cx,!,?{,BREAK,},esi,[1],edi,[1],==,?{,BREAK,},esi,++,edi,++,cx,--,0,GOTO

Unimplemented/unhandled	Instructions

Those	are	expressed	with	the	'TODO'	command.	which	acts	as	a	'BREAK',	but	displays	a
warning	message	describing	that	an	instruction	is	not	implemented	and	will	not	be	emulated.
For	example:

fmulp	ST(1),	ST(0)						=>						TODO,fmulp	ST(1),ST(0)

ESIL	Disassembly	Example:

[0x1000010f8]>	e	asm.esil=true

[0x1000010f8]>	pd	$r	@	entry0

			;						[0]	va=0x1000010f8	pa=0x000010f8	sz=13299	vsz=13299	rwx=-r-x	0.__text

												;--	section.0.__text:

												0x1000010f8				55											8,rsp,-=,rbp,rsp,=[8]

												0x1000010f9				4889e5							rsp,rbp,=

												0x1000010fc				4883c768					104,rdi,+=

												0x100001100				4883c668					104,rsi,+=

												0x100001104				5d											rsp,[8],rbp,=,8,rsp,+=																								

																		┌─<	0x100001105				e950350000			0x465a,rip,=	;[1]

								│			0x10000110a				55											8,rsp,-=,rbp,rsp,=[8]

								│			0x10000110b				4889e5							rsp,rbp,=																																					

																		│			0x10000110e				488d4668					rsi,104,+,rax,=

								│			0x100001112				488d7768					rdi,104,+,rsi,=

								│			0x100001116				4889c7							rax,rdi,=

								│			0x100001119				5d											rsp,[8],rbp,=,8,rsp,+=																								

																	┌──<	0x10000111a				e93b350000			0x465a,rip,=	;[1]

							││			0x10000111f				55											8,rsp,-=,rbp,rsp,=[8]

							││			0x100001120				4889e5							rsp,rbp,=

							││			0x100001123				488b4f60					rdi,96,+,[8],rcx,=

							││			0x100001127				4c8b4130					rcx,48,+,[8],r8,=																													

																	││			0x10000112b				488b5660					rsi,96,+,[8],rdx,=

							││			0x10000112f				b801000000			1,eax,=	;		0x00000001

							││			0x100001134				4c394230					rdx,48,+,[8],r8,==,cz,?=

						┌───<	0x100001138				7f1a									sf,of,!,^,zf,!,&,?{,0x1154,rip,=,}	;[2]

					┌────<	0x10000113a				7d07									of,!,sf,^,?{,0x1143,rip,}	;[3]

					││││			0x10000113c				b8ffffffff			0xffffffff,eax,=	;		0xffffffff																

														┌─────<	0x100001141				eb11									0x1154,rip,=	;[2]

				│└────>	0x100001143				488b4938					rcx,56,+,[8],rcx,=

				│	│││			0x100001147				48394a38					rdx,56,+,[8],rcx,==,cz,?=

Introspection

ESIL

115

To	ease	ESIL	parsing	we	should	have	a	way	to	express	introspection	expressions	to	extract
data	we	want.	For	example,	we	may	want	to	get	the	target	address	of	a	jump.	The	parser	for
ESIL	expressions	should	offer	API	to	make	it	possible	to	extract	information	by	analyzing	the
expressions	easily.

>		ao~esil,opcode

opcode:	jmp	0x10000465a

esil:	0x10000465a,rip,=

We	need	a	way	to	retrieve	the	numeric	value	of	'rip'.	This	is	a	very	simple	example,	but	there
are	more	complex,	like	conditional	ones.	We	need	expressions	to	be	able	to	get:

opcode	type
destination	of	jump
condition	depends	on
all	regs	modified	(write)
all	regs	accessed	(read)

API	HOOKS

It	is	important	for	emulation	to	be	able	to	setup	hooks	in	parser,	so	we	can	extend	it	to
implement	analysis	without	having	to	change	parser	again	and	again.	That	is,	every	time	an
operation	is	about	to	be	executed,	a	user	hook	is	called.	It	can	be	used	to	determine	if	rip	is
going	to	change,	or	if	the	instruction	updates	stack,	etc.	Later,	we	can	split	that	callback	into
several	ones	to	have	an	event-based	analysis	API	that	may	be	extended	in	js	like	this:
esil.on('regset',	function(){..	esil.on('syscall',	function(){esil.regset('rip'

For	the	API,	see	functions	hook_flag_read(),	hook_execute(),	hook_mem_read().	A	callback
should	return	true	if	you	want	to	override	the	action	taken	for	a	callback.	For	example,	to
deny	memory	reads	in	a	region,	or	voiding	memory	writes,	effectively	making	it	read-only.
Return	false	or	0	if	you	want	to	trace	ESIL	expression	parsing.

Other	operations	that	require	bindings	to	external	functionalities	to	work.	In	this	case,	r_ref
and	r_io.	This	must	be	defined	when	initializing	the	esil	vm.

Io	Get/Set	Out	ax,	44	44,ax,:ou
Selectors	(cs,ds,gs...)	Mov	eax,	ds:[ebp+8]	Ebp,8,+,:ds,eax,=

ESIL

116

Radare2	provides	a	wide	set	of	a	features	to	automate	boring	work.	It	ranges	from	the
simple	sequencing	of	the	commands	to	the	calling	scripts/another	programs	via	IPC	(Inter-
Process	Communication),	called	r2pipe.

As	mentioned	a	few	times	before	there	is	an	ability	to	sequence	commands	using		;	
semicolon	operator.

[0x00404800]>	pd	1	;	ao	1

											0x00404800						b827e66100					mov	eax,	0x61e627						;	"tab"

address:	0x404800

opcode:	mov	eax,	0x61e627

prefix:	0

bytes:	b827e66100

ptr:	0x0061e627

refptr:	0

size:	5

type:	mov

esil:	6415911,rax,=

stack:	null

family:	cpu

[0x00404800]>

It	simply	runs	the	second	command	after	finishing	the	first	one,	like	in	a	shell.

The	second	important	way	to	sequence	the	commands	is	with	a	simple	pipe		|	

ao|grep	address

Note,	the		|		pipe	only	can	pipe	output	of	r2	commands	to	external	(shell)	commands,	like
system	programs	or	builtin	shell	commands.	There	is	a	similar	way	to	sequence	r2
commands,	using	the	backtick	operator	```,	which	works	in	the	same	way	it	does	in	a	shell.

For	example,	we	want	to	see	a	few	bytes	of	the	memory	at	the	address	referred	to	by	the
'mov	eax,	addr'	instruction.	We	can	do	that	without	jumping	to	it,	using	a	sequence	of
commands:

Scripting

117

[0x00404800]>	pd	1

														0x00404800						b827e66100					mov	eax,	0x61e627						;	"tab"

[0x00404800]>	ao

address:	0x404800

opcode:	mov	eax,	0x61e627

prefix:	0

bytes:	b827e66100

ptr:	0x0061e627

refptr:	0

size:	5

type:	mov

esil:	6415911,rax,=

stack:	null

family:	cpu

[0x00404800]>	ao~ptr[1]

0x0061e627

0

[0x00404800]>	px	10	@	`ao~ptr[1]`

-	offset	-			0	1		2	3		4	5		6	7		8	9		A	B		C	D		E	F		0123456789ABCDEF

0x0061e627		7461	6200	2e69	6e74	6572																	tab..inter

[0x00404800]>

And	of	course	it's	possible	to	redirect	the	output	of	an	r2	command	into	a	file,	using	the		>	
and		>>		commands

[0x00404800]>	px	10	@	`ao~ptr[1]`	>	example.txt

[0x00404800]>	px	10	@	`ao~ptr[1]`	>>	example.txt

The		?$?		command	describes	several	helpful	variables	you	can	use	to	do	similar	actions
even	more	easily,	like	the		$v		"immediate	value"	variable,	or	the		$m		opcode	memory
reference	variable.

Scripting

118

One	of	the	most	common	task	in	automation	is	looping	through	something,	there	are	multiple
ways	to	do	this	in	radare2.

We	can	loop	over	flags:

@@	flagname-regex

For	example,	we	want	to	see	function	information	with		afi		command:

[0x004047d6]>	afi

#

offset:	0x004047d0

name:	entry0

size:	42

realsz:	42

stackframe:	0

call-convention:	amd64

cyclomatic-complexity:	1

bits:	64

type:	fcn	[NEW]

num-bbs:	1

edges:	0

end-bbs:	1

call-refs:	0x00402450	C

data-refs:	0x004136c0	0x00413660	0x004027e0

code-xrefs:

data-xrefs:

locals:0

args:	0

diff:	type:	new

[0x004047d6]>

Now	let's	say,	for	example,	that	we'd	like	see	a	particular	field	from	this	output	for	all
functions	found	by	analysis.	We	can	do	that	with	a	loop	over	all	function	flags	(whose	names
begin	with		fcn.):

[0x004047d6]>	afi	@@	fcn.*	~name

This	command	will	extract	the		name		field	from	the		afi		output	of	every	flag	with	a	name
matching	the	regexp		fcn.*	.

We	can	also	loop	over	a	list	of	offsets,	using	the	following	syntax:

@@=1	2	3	...	N

Loops

119

For	example,	say	we	want	to	see	the	opcode	information	for	2	offsets:	the	current	one,	and
at	current	+	2:

[0x004047d6]>	ao	@@=$$	$$+2

address:	0x4047d6

opcode:	mov	rdx,	rsp

prefix:	0

bytes:	4889e2

refptr:	0

size:	3

type:	mov

esil:	rsp,rdx,=

stack:	null

family:	cpu

address:	0x4047d8

opcode:	loop	0x404822

prefix:	0

bytes:	e248

refptr:	0

size:	2

type:	cjmp

esil:	1,rcx,-=,rcx,?{,4212770,rip,=,}

jump:	0x00404822

fail:	0x004047da

stack:	null

cond:	al

family:	cpu

[0x004047d6]>

Note	we're	using	the		$$		variable	which	evaluates	to	the	current	offset.	Also	note	that		$$+2	
is	evaluated	before	looping,	so	we	can	use	the	simple	arithmetic	expressions.

A	third	way	to	loop	is	by	having	the	offsets	be	loaded	from	a	file.	This	file	should	contain	one
offset	per	line.

[0x004047d0]>	?v	$$	>	offsets.txt

[0x004047d0]>	?v	$$+2	>>	offsets.txt

[0x004047d0]>	!cat	offsets.txt

4047d0

4047d2

[0x004047d0]>	pi	1	@@.offsets.txt

xor	ebp,	ebp

mov	r9,	rdx

radare2	also	offers	various		foreach		constructs	for	looping.	One	of	the	most	useful	is	for
looping	through	all	the	instructions	of	a	function:

Loops

120

[0x004047d0]>	pdf

╒	(fcn)	entry0	42

│																;	UNKNOWN	XREF	from	0x00400018	(unk)

│																;	DATA	XREF	from	0x004064bf	(sub.strlen_460)

│																;	DATA	XREF	from	0x00406511	(sub.strlen_460)

│																;	DATA	XREF	from	0x0040b080	(unk)

│																;	DATA	XREF	from	0x0040b0ef	(unk)

│																0x004047d0						31ed											xor	ebp,	ebp

│																0x004047d2						4989d1									mov	r9,	rdx

│																0x004047d5						5e													pop	rsi

│																0x004047d6						4889e2									mov	rdx,	rsp

│																0x004047d9						4883e4f0							and	rsp,	0xfffffffffffffff0

│																0x004047dd						50													push	rax

│																0x004047de						54													push	rsp

│																0x004047df						49c7c0c03641.		mov	r8,	0x4136c0

│																0x004047e6						48c7c1603641.		mov	rcx,	0x413660						;	"AWA..AVI..AU

I..ATL.%..	"

0x00413660		;	"AWA..AVI..AUI..ATL.%..	"

│																0x004047ed						48c7c7e02740.		mov	rdi,	main										;	"AWAVAUATUH..

S..H...."	@

0x4027e0

│																0x004047f4						e857dcffff					call	sym.imp.__libc_start_main

╘																0x004047f9						f4													hlt

[0x004047d0]>	pi	1	@@i

mov	r9,	rdx

pop	rsi

mov	rdx,	rsp

and	rsp,	0xfffffffffffffff0

push	rax

push	rsp

mov	r8,	0x4136c0

mov	rcx,	0x413660

mov	rdi,	main

call	sym.imp.__libc_start_main

hlt

In	this	example	the	command		pi	1		runs	over	all	the	instructions	in	the	current	function
(entry0).

The	last	kind	of	looping	lets	you	loop	through	predefined	iterator	types:

symbols
imports
registers
threads
comments
functions
flags

Loops

121

This	is	done	using	the		@@@		command.	The	previous	example	of	listing	information	about
functions	can	also	be	done	using	the		@@@		command:

[0x004047d6]>	afi	@@@	functions	~name

This	will	extract		name		field	from		afi		output	and	will	output	a	huge	list	of	function	names.
We	can	choose	only	the	second	column,	to	remove	the	redundant		name:		on	every	line:

[0x004047d6]>	afi	@@@	functions	~name[1]

Loops

122

Apart	from	simple	sequencing	and	looping,	radare2	allows	to	write	simple	macros,	using	this
construction:

[0x00404800]>	(qwe,	pd	4,	ao)

This	will	define	a	macro	called	'qwe'	which	runs	sequentially	first	'pd	4'	then	'ao'.	Calling	the
macro	using	syntax		.(macro)		is	simple:

[0x00404800]>	(qwe,	pd	4,	ao)

[0x00404800]>	.(qwe)

				0x00404800						b827e66100					mov	eax,	0x61e627						;	"tab"

				0x00404805						55													push	rbp

				0x00404806						482d20e66100			sub	rax,	section_end.LOAD1

				0x0040480c						4889e5									mov	rbp,	rsp

address:	0x404800

opcode:	mov	eax,	0x61e627

prefix:	0

bytes:	b827e66100

ptr:	0x0061e627

refptr:	0

size:	5

type:	mov

esil:	6415911,rax,=

stack:	null

family:	cpu

[0x00404800]>

To	list	available	macroses	simply	call		(*	:

[0x00404800]>	(*

(qwe	,	pd	4,	ao)

And	if	want	to	remove	some	macro,	just	add	'-'	before	the	name:

[0x00404800]>	(-qwe)

Macro	'qwe'	removed.

[0x00404800]>

Moreover,	it's	possible	to	create	a	macro	that	takes	arguments,	which	comes	in	handy	in
some	simple	scripting	situations.	To	create	a	macro	that	takes	arguments	you	simply	add
them	to	macro	definition.	Be	sure,	if	you're	using	characters	like	';',	to	quote	the	whole
command	for	proper	parsing.

Macros

123

[0x00404800]

[0x004047d0]>	"(foo	x	y,pd	$0;	s	+$1)"

[0x004047d0]>	.(foo	5	6)

								;--	entry0:

								0x004047d0						31ed											xor	ebp,	ebp

								0x004047d2						4989d1									mov	r9,	rdx

								0x004047d5						5e																pop	rsi

								0x004047d6								4889e2									mov	rdx,	rsp

								0x004047d9								4883e4f0							and	rsp,	0xfffffffffffffff0

[0x004047d6]>

As	you	can	see,	the	arguments	are	named	by	index,	starting	from	0:	$0,	$1,	...

Macros

124

Rabin2	—	Show	Properties	of	a	Binary
Under	this	bunny-arabic-like	name,	radare	hides	a	powerful	tool	to	handle	binary	files,	to	get
information	on	imports,	sections,	headers	etc.	Rabin2	can	present	it	in	several	formats
accepted	by	other	tools,	including	radare2	itself.	Rabin2	understands	many	file	formats:	Java
CLASS,	ELF,	PE,	Mach-O,	etc.,	and	it	is	able	to	obtain	symbol	import/exports,	library
dependencies,	strings	of	data	sections,	xrefs,	entrypoint	address,	sections,	architecture	type.

$	rabin2	-h

Usage:	rabin2	[-ACdehHiIjlLMqrRsSvVxzZ]	[-@	addr]	[-a	arch]	[-b	bits]

														[-B	addr]	[-c	F:C:D]	[-f	str]	[-m	addr]	[-n	str]	[-N	len]

														[-o	str]	[-O	str]	file

	-@	[addr]							show	section,	symbol	or	import	at	addr

	-A														list	archs

	-a	[arch]							set	arch	(x86,	arm,	..	or	<arch>_<bits>)

	-b	[bits]							set	bits	(32,	64	...)

	-B	[addr]							override	base	address	(pie	bins)

	-c	[fmt:C:D]				create	[elf,mach0,pe]	with	Code	and	Data	hexpairs	(see	-a)

	-C														list	classes

	-d														show	debug/dwarf	information

	-e														entrypoint

	-f	[str]								select	sub-bin	named	str

	-g														same	as	-SMRevsiz	(show	all	info)

	-h														this	help

	-H														header	fields

	-i														imports	(symbols	imported	from	libraries)

	-I														binary	info

	-j														output	in	json

	-l														linked	libraries

	-L														list	supported	bin	plugins

	-m	[addr]							show	source	line	at	addr

	-M														main	(show	address	of	main	symbol)

	-n	[str]								show	section,	symbol	or	import	named	str

	-N	[minlen]					force	minimum	number	of	chars	per	string	(see	-z)

	-o	[str]								output	file/folder	for	write	operations	(out	by	default)

	-O	[str]								write/extract	operations	(-O	help)

	-q														be	quiet,	just	show	fewer	data

	-r														radare	output

	-R														relocations

	-s														symbols	(exports)

	-S														sections

	-v														use	vaddr	in	radare	output	(or	show	version	if	no	file)

	-x														extract	bins	contained	in	file

	-z														strings	(from	data	section)

	-zz													strings	(from	raw	bins	[e	bin.rawstr=1])

	-Z														guess	size	of	binary	program

Rabin2

125

Rabin2

126

File	Properties	Identification
File	type	identification	is	done	using		-I	.	With	this	option,	rabin2	prints	information	on	a
binary's	type,	its	encoding,	endianness,	class,	operating	system,	etc.:

$	rabin2	-I	/bin/ls

file				/bin/ls

type				EXEC	(Executable	file)

pic	false

has_va		true

root				elf

class			ELF64

lang				c

arch				x86

bits				64

machine	AMD	x86-64	architecture

os		linux

subsys		linux

endian		little

strip			true

static		false

linenum	false

lsyms			false

relocs		false

rpath			NONE

To	make	rabin2	output	information	in	format	that	the	main	program,	radare2,	can
understand,	pass		-Ir		option	to	it:

$	rabin2	-Ir	/bin/ls

e	file.type=elf

e	cfg.bigendian=false

e	asm.os=linux

e	asm.arch=x86

e	anal.arch=x86

e	asm.bits=64

e	asm.dwarf=true

File	Identification

127

Code	Entrypoints
The		-e		option	passed	to	rabin2	will	show	entrypoints	for	given	binary.	Two	examples:

$	rabin2	-e	/bin/ls

[Entrypoints]

addr=0x00004888	off=0x00004888	baddr=0x00000000

1	entrypoints

$	rabin2	-er	/bin/ls

fs	symbols

f	entry0	@	0x00004888

s	entry0

Entrypoint

128

Imports
Rabin2	is	able	to	find	imported	objects	by	an	executable,	as	well	as	their	offsets	in	its	PLT.
This	information	is	useful,	for	example,	to	understand	what	external	function	is	invoked	by
	call		instruction.	Pass		-i		flag	to	rabin	to	get	a	list	of	imports.	An	example:

$	rabin2	-i	/bin/ls	|head

[Imports]

ordinal=001	plt=0x000021b0	bind=GLOBAL	type=FUNC	name=__ctype_toupper_loc

ordinal=002	plt=0x000021c0	bind=GLOBAL	type=FUNC	name=__uflow

ordinal=003	plt=0x000021d0	bind=GLOBAL	type=FUNC	name=getenv

ordinal=004	plt=0x000021e0	bind=GLOBAL	type=FUNC	name=sigprocmask

ordinal=005	plt=0x000021f0	bind=GLOBAL	type=FUNC	name=raise

ordinal=006	plt=0x00002210	bind=GLOBAL	type=FUNC	name=localtime

ordinal=007	plt=0x00002220	bind=GLOBAL	type=FUNC	name=__mempcpy_chk

ordinal=008	plt=0x00002230	bind=GLOBAL	type=FUNC	name=abort

ordinal=009	plt=0x00002240	bind=GLOBAL	type=FUNC	name=__errno_location

(...)

Imports

129

Symbols	(Exports)
With	rabin2,	the	generated	symbols	list	format	is	similar	to	the	imports	list.	Use	the		-s	
option	to	get	it:

$	rabin2	-s	/bin/ls	|	head

[Symbols]

addr=0x0021a610	off=0x0021a610	ord=114	fwd=NONE	sz=8	bind=GLOBAL	type=OBJECT	name=stdo

ut

addr=0x0021a600	off=0x0021a600	ord=115	fwd=NONE	sz=0	bind=GLOBAL	type=NOTYPE	name=_eda

ta

addr=0x0021b388	off=0x0021b388	ord=116	fwd=NONE	sz=0	bind=GLOBAL	type=NOTYPE	name=_end

addr=0x0021a600	off=0x0021a600	ord=117	fwd=NONE	sz=8	bind=GLOBAL	type=OBJECT	name=__pr

ogname

addr=0x0021a630	off=0x0021a630	ord=119	fwd=NONE	sz=8	bind=UNKNOWN	type=OBJECT	name=pro

gram_invocation_name

addr=0x0021a600	off=0x0021a600	ord=121	fwd=NONE	sz=0	bind=GLOBAL	type=NOTYPE	name=__bs

s_start

addr=0x0021a630	off=0x0021a630	ord=122	fwd=NONE	sz=8	bind=GLOBAL	type=OBJECT	name=__pr

ogname_full

addr=0x0021a600	off=0x0021a600	ord=123	fwd=NONE	sz=8	bind=UNKNOWN	type=OBJECT	name=pro

gram_invocation_short_name

addr=0x00002178	off=0x00002178	ord=124	fwd=NONE	sz=0	bind=GLOBAL	type=FUNC	name=_init

With	the		-sr		option	rabin2	produces	a	radare2	script	instead.	It	can	later	be	passed	to	the
core	to	automatically	flag	all	symbols	and	to	define	corresponding	byte	ranges	as	functions
and	data	blocks.

$	rabin2	-sr	/bin/ls

fs	symbols

Cd	8	@	0x0021a610

f	sym.stdout	8	0x0021a610

f	sym._edata	0	0x0021a600

f	sym._end	0	0x0021b388

Cd	8	@	0x0021a600

f	sym.__progname	8	0x0021a600

Cd	8	@	0x0021a630

f	sym.program_invocation_name	8	0x0021a630

f	sym.__bss_start	0	0x0021a600

Symbols	(exports)

130

List	Libraries
Rabin2	can	list	libraries	used	by	a	binary	with	the		-l		option:

$	rabin2	-l	/bin/ls

[Linked	libraries]

libselinux.so.1

librt.so.1

libacl.so.1

libc.so.6

4	libraries

If	you	compare	the	outputs	of		rabin2	-l		and		ldd	,	you	will	notice	that	rabin2	lists	fewer
libraries	than		ldd	.	The	reason	is	that	rabin2	does	not	follow	and	does	not	show
dependencies	of	libraries.	Only	direct	binary	dependencies	are	shown.

Libraries

131

Strings
The		-z		option	is	used	to	list	readable	strings	found	in	the	.rodata	section	of	ELF	binaries,
or	the	.text	section	of	PE	files.	Example:

$	rabin2	-z	/bin/ls	|head

addr=0x00012487	off=0x00012487	ordinal=000	sz=9	len=9	section=.rodata	type=A	string=sr

c/ls.c

addr=0x00012490	off=0x00012490	ordinal=001	sz=26	len=26	section=.rodata	type=A	string=

sort_type	!=	sort_version

addr=0x000124aa	off=0x000124aa	ordinal=002	sz=5	len=5	section=.rodata	type=A	string=	%

lu

addr=0x000124b0	off=0x000124b0	ordinal=003	sz=7	len=14	section=.rodata	type=W	string=%

*lu	?

addr=0x000124ba	off=0x000124ba	ordinal=004	sz=8	len=8	section=.rodata	type=A	string=%s

	%*s

addr=0x000124c5	off=0x000124c5	ordinal=005	sz=10	len=10	section=.rodata	type=A	string=

%*s,	%*s

addr=0x000124cf	off=0x000124cf	ordinal=006	sz=5	len=5	section=.rodata	type=A	string=	-

>

addr=0x000124d4	off=0x000124d4	ordinal=007	sz=17	len=17	section=.rodata	type=A	string=

cannot	access	%s

addr=0x000124e5	off=0x000124e5	ordinal=008	sz=29	len=29	section=.rodata	type=A	string=

cannot	read	symbolic	link	%s

addr=0x00012502	off=0x00012502	ordinal=009	sz=10	len=10	section=.rodata	type=A	string=

unlabeled

With	the		-zr		option,	this	information	is	represented	as	a	radare2	commands	list.	It	can	be
used	in	a	radare2	session	to	automatically	create	a	flag	space	called	"strings"	pre-populated
with	flags	for	all	strings	found	by	rabin2.	Furthermore,	this	script	will	mark	corresponding
byte	ranges	as	strings	instead	of	code.

$	rabin2	-zr	/bin/ls	|head

fs	strings

f	str.src_ls.c	9	@	0x00012487

Cs	9	@	0x00012487

f	str.sort_type__sort_version	26	@	0x00012490

Cs	26	@	0x00012490

f	str._lu	5	@	0x000124aa

Cs	5	@	0x000124aa

f	str.__lu_	14	@	0x000124b0

Cs	7	@	0x000124b0

f	str._s__s	8	@	0x000124ba

(...)

Strings

132

Strings

133

Program	Sections
Rabin2	called	with	the		-S		option	gives	complete	information	about	the	sections	of	an
executable.	For	each	section	the	index,	offset,	size,	alignment,	type	and	permissions,	are
shown.	The	next	example	demonstrates	this:

$	rabin2	-S	/bin/ls

	[Sections]

idx=00	addr=0x00000238	off=0x00000238	sz=28	vsz=28	perm=-r--	name=.interp

idx=01	addr=0x00000254	off=0x00000254	sz=32	vsz=32	perm=-r--	name=.note.ABI_tag

idx=02	addr=0x00000274	off=0x00000274	sz=36	vsz=36	perm=-r--	name=.note.gnu.build_id

idx=03	addr=0x00000298	off=0x00000298	sz=104	vsz=104	perm=-r--	name=.gnu.hash

idx=04	addr=0x00000300	off=0x00000300	sz=3096	vsz=3096	perm=-r--	name=.dynsym

idx=05	addr=0x00000f18	off=0x00000f18	sz=1427	vsz=1427	perm=-r--	name=.dynstr

idx=06	addr=0x000014ac	off=0x000014ac	sz=258	vsz=258	perm=-r--	name=.gnu.version

idx=07	addr=0x000015b0	off=0x000015b0	sz=160	vsz=160	perm=-r--	name=.gnu.version_r

idx=08	addr=0x00001650	off=0x00001650	sz=168	vsz=168	perm=-r--	name=.rela.dyn

idx=09	addr=0x000016f8	off=0x000016f8	sz=2688	vsz=2688	perm=-r--	name=.rela.plt

idx=10	addr=0x00002178	off=0x00002178	sz=26	vsz=26	perm=-r-x	name=.init

idx=11	addr=0x000021a0	off=0x000021a0	sz=1808	vsz=1808	perm=-r-x	name=.plt

idx=12	addr=0x000028b0	off=0x000028b0	sz=64444	vsz=64444	perm=-r-x	name=.text

idx=13	addr=0x0001246c	off=0x0001246c	sz=9	vsz=9	perm=-r-x	name=.fini

idx=14	addr=0x00012480	off=0x00012480	sz=20764	vsz=20764	perm=-r--	name=.rodata

idx=15	addr=0x0001759c	off=0x0001759c	sz=1820	vsz=1820	perm=-r--	name=.eh_frame_hdr

idx=16	addr=0x00017cb8	off=0x00017cb8	sz=8460	vsz=8460	perm=-r--	name=.eh_frame

idx=17	addr=0x00019dd8	off=0x00019dd8	sz=8	vsz=8	perm=-rw-	name=.init_array

idx=18	addr=0x00019de0	off=0x00019de0	sz=8	vsz=8	perm=-rw-	name=.fini_array

idx=19	addr=0x00019de8	off=0x00019de8	sz=8	vsz=8	perm=-rw-	name=.jcr

idx=20	addr=0x00019df0	off=0x00019df0	sz=512	vsz=512	perm=-rw-	name=.dynamic

idx=21	addr=0x00019ff0	off=0x00019ff0	sz=16	vsz=16	perm=-rw-	name=.got

idx=22	addr=0x0001a000	off=0x0001a000	sz=920	vsz=920	perm=-rw-	name=.got.plt

idx=23	addr=0x0001a3a0	off=0x0001a3a0	sz=608	vsz=608	perm=-rw-	name=.data

idx=24	addr=0x0001a600	off=0x0001a600	sz=3464	vsz=3464	perm=-rw-	name=.bss

idx=25	addr=0x0001a600	off=0x0001a600	sz=8	vsz=8	perm=----	name=.gnu_debuglink

idx=26	addr=0x0001a608	off=0x0001a608	sz=254	vsz=254	perm=----	name=.shstrtab

27	sections

With	the		-Sr		option,	rabin2	will	flag	the	start/end	of	every	section,	and	will	pass	the	rest	of
information	as	a	comment.

Program	Sections

134

$	rabin2	-Sr	/bin/ls

fs	sections

S	0x00000238	0x00000238	0x0000001c	0x0000001c	.interp	4

f	section..interp	28	0x00000238

f	section_end..interp	0	0x00000254

CC	[00]	va=0x00000238	pa=0x00000238	sz=28	vsz=28	rwx=-r--	.interp	@	0x00000238

S	0x00000254	0x00000254	0x00000020	0x00000020	.note.ABI_tag	4

f	section..note.ABI_tag	32	0x00000254

f	section_end..note.ABI_tag	0	0x00000274

CC	[01]	va=0x00000254	pa=0x00000254	sz=32	vsz=32	rwx=-r--	.note.ABI_tag	@	0x00000254

S	0x00000274	0x00000274	0x00000024	0x00000024	.note.gnu.build_id	4

f	section..note.gnu.build_id	36	0x00000274

f	section_end..note.gnu.build_id	0	0x00000298

CC	[02]	va=0x00000274	pa=0x00000274	sz=36	vsz=36	rwx=-r--	.note.gnu.build_id	@	0x00000

274

S	0x00000298	0x00000298	0x00000068	0x00000068	.gnu.hash	4

f	section..gnu.hash	104	0x00000298

f	section_end..gnu.hash	0	0x00000300

CC	[03]	va=0x00000298	pa=0x00000298	sz=104	vsz=104	rwx=-r--	.gnu.hash	@	0x00000298

S	0x00000300	0x00000300	0x00000c18	0x00000c18	.dynsym	4

f	section..dynsym	3096	0x00000300

f	section_end..dynsym	0	0x00000f18

CC	[04]	va=0x00000300	pa=0x00000300	sz=3096	vsz=3096	rwx=-r--	.dynsym	@	0x00000300

S	0x00000f18	0x00000f18	0x00000593	0x00000593	.dynstr	4

f	section..dynstr	1427	0x00000f18

f	section_end..dynstr	0	0x000014ab

CC	[05]	va=0x00000f18	pa=0x00000f18	sz=1427	vsz=1427	rwx=-r--	.dynstr	@	0x00000f18

S	0x000014ac	0x000014ac	0x00000102	0x00000102	.gnu.version	4

f	section..gnu.version	258	0x000014ac

f	section_end..gnu.version	0	0x000015ae

(...)

Program	Sections

135

Binary	Diffing
This	section	is	based	on	the	http://radare.today	article	"binary	diffing"

Without	any	parameters,		radiff2		by	default	shows	what	bytes	are	changed	and	their
corresponding	offsets:

$	radiff2	genuine	cracked

0x000081e0	85c00f94c0	=>	9090909090	0x000081e0		

0x0007c805	85c00f84c0	=>	9090909090	0x0007c805

$	rasm2	-d	85c00f94c0

test	eax,	eax

sete	al

Notice	how	the	two	jumps	are	nop'ed.

For	bulk	processing,	you	may	want	to	have	a	higher-level	overview	of	differences.	This	is
why	radare2	is	able	to	compute	the	distance	and	the	percentage	of	similarity	between	two
files	with	the		-s		option:

$	radiff2	-s	/bin/true	/bin/false

similarity:	0.97

distance:	743

If	you	want	more	concrete	data,	it's	also	possible	to	count	the	differences,	with	the		-c	
option:

$	radiff2	-c	genuine	cracked

2		

If	you	are	unsure	whether	you	are	dealing	with	similar	binaries,	with		-C		flag	you	can	check
there	are	matching	functions.	It	this	mode,	it	will	give	you	three	columns	for	all	functions:
"First	file	offset",	"Percentage	of	matching"	and	"Second	file	offset".

Binary	Diffing

136

http://radare.today
http://radare.today/binary-diffing/

$	radiff2	-C	/bin/false	/bin/true	

									entry0		0x4013e8	|			MATCH		(0.904762)	|	0x4013e2		entry0

									sym.imp.__libc_start_main		0x401190	|			MATCH		(1.000000)	|	0x401190		sym.imp

.__libc_start_main		

									fcn.00401196		0x401196	|			MATCH		(1.000000)	|	0x401196		fcn.00401196

									fcn.0040103c		0x40103c	|			MATCH		(1.000000)	|	0x40103c		fcn.0040103c

									fcn.00401046		0x401046	|			MATCH		(1.000000)	|	0x401046		fcn.00401046

									[...]

And	now	a	cool	feature	:	radare2	supports	graph-diffing,	à	la	DarunGrim,	with	the		-g	
option.	You	can	either	give	it	a	symbol	name,	of	specify	two	offsets,	if	the	function	you	want
to	diff	is	named	differently	in	compared	files.	For	example,		radiff2	-g	main	/bin/true
/bin/false	|	xdot	-		will	show	differences	in		main()		function	of	Unix		true		and		false	
programs.	You	can	compare	it	to		radiff2	-g	main	/bin/false	/bin/true		(Notice	the	order	of
the	arguments)	to	get	the	two	versions.	This	is	the	result:

Parts	in	yellow	indicate	that	some	offsets	do	not	match.	The	grey	piece	means	a	perfect
match.	The	red	one	highlights	a	strong	difference.	If	you	look	closely,	you	will	see	that	the
left	part	of	the	picture	has		mov	edi,	0x1;	call	sym.imp.exit	,	while	the	right	one	has		xor
edi,	edi;	call	sym.imp.exit	.

Binary	diffing	is	an	important	feature	for	reverse	engineering.	It	can	be	used	to	analyze
security	updates,	infected	binaries,	firmware	changes	and	more...

We	have	only	shown	the	code	analysis	diffing	functionality,	but	radare2	supports	additional
types	of	diffing	between	two	binaries:	at	byte	level,	deltified	similarities,	and	more	to	come.

Binary	Diffing

137

http://www.darungrim.org/
https://en.wikipedia.org/wiki/Patch_Tuesday

We	have	plans	to	implement	more	kinds	of	bindiffing	algorithms	into	r2,	and	why	not,	add
support	for	ascii	art	graph	diffing	and	better	integration	with	the	rest	of	the	toolkit.

Binary	Diffing

138

Rasm2
	rasm2		is	an	inline	assembler/disassembler.	Initially,		rasm		tool	was	designed	to	be	used	for
binary	patching.	It	is	main	function	is	get	bytes	corresponding	to	given	machine	instruction
opcode.

$	rasm2	-h

Usage:	rasm2	[-CdDehLBvw]	[-a	arch]	[-b	bits]	[-o	addr]	[-s	syntax]

													[-f	file]	[-F	fil:ter]	[-i	skip]	[-l	len]	'code'|hex|-

	-a	[arch]				Set	architecture	to	assemble/disassemble	(see	-L)

	-b	[bits]				Set	cpu	register	size	(8,	16,	32,	64)	(RASM2_BITS)

	-c	[cpu]					Select	specific	CPU	(depends	on	arch)

	-C											Output	in	C	format

	-d,	-D							Disassemble	from	hexpair	bytes	(-D	show	hexpairs)

	-e											Use	big	endian	instead	of	little	endian

	-f	[file]				Read	data	from	file

	-F	[in:out]		Specify	input	and/or	output	filters	(att2intel,	x86.pseudo,	...)

	-h											Show	this	help

	-i	[len]					ignore/skip	N	bytes	of	the	input	buffer

	-k	[kernel]		Select	operating	system	(linux,	windows,	darwin,	..)

	-l	[len]					Input/Output	length

	-L											List	supported	asm	plugins

	-o	[offset]		Set	start	address	for	code	(default	0)

	-O	[file]				Output	file	name	(rasm2	-Bf	a.asm	-O	a)

	-s	[syntax]		Select	syntax	(intel,	att)

	-B											Binary	input/output	(-l	is	mandatory	for	binary	input)

	-v											Show	version	information

	-w											What's	this	instruction	for?	describe	opcode

	If	'-l'	value	is	greater	than	output	length,	output	is	padded	with	nops

	If	the	last	argument	is	'-'	reads	from	stdin

Plugins	for	supported	target	architectures	can	be	listed	with	the		-L		option.	Knowing	a
plugin	name,	you	can	use	it	by	specifying	its	name	to	the		-a		option

Rasm2

139

$	rasm2	-L

_d		16									8051								PD						8051	Intel	CPU

_d		16	32						arc									GPL3				Argonaut	RISC	Core

ad		16	32	64			arm									GPL3				Acorn	RISC	Machine	CPU

_d		16	32	64			arm.cs						BSD					Capstone	ARM	disassembler

_d		16	32						arm.winedbg	LGPL2			WineDBG's	ARM	disassembler

_d		16	32						avr									GPL					AVR	Atmel

ad		32									bf										LGPL3			Brainfuck

_d		16									cr16								LGPL3			cr16	disassembly	plugin

_d		16									csr									PD						Cambridge	Silicon	Radio	(CSR)

ad		32	64						dalvik						LGPL3			AndroidVM	Dalvik

ad		16									dcpu16						PD						Mojang's	DCPU-16

_d		32	64						ebc									LGPL3			EFI	Bytecode

_d		8										gb										LGPL3			GameBoy(TM)	(z80-like)

_d		16									h8300							LGPL3			H8/300	disassembly	plugin

_d		8										i8080							BSD					Intel	8080	CPU

ad		32									java								Apache		Java	bytecode

_d		32									m68k								BSD					Motorola	68000

_d		32									malbolge				LGPL3			Malbolge	Ternary	VM

ad		32	64						mips								GPL3				MIPS	CPU

_d		16	32	64			mips.cs					BSD					Capstone	MIPS	disassembler

_d		16	32	64			msil								PD						.NET	Microsoft	Intermediate	Language

_d		32									nios2							GPL3				NIOS	II	Embedded	Processor

_d		32	64						ppc									GPL3				PowerPC

_d		32	64						ppc.cs						BSD					Capstone	PowerPC	disassembler

ad													rar									LGPL3			RAR	VM

_d		32									sh										GPL3				SuperH-4	CPU

_d		32	64						sparc							GPL3				Scalable	Processor	Architecture

_d		32									tms320						LGPLv3		TMS320	DSP	family

_d		32									ws										LGPL3			Whitespace	esotheric	VM

_d		16	32	64			x86									BSD					udis86	x86-16,32,64

_d		16	32	64			x86.cs						BSD					Capstone	X86	disassembler

a_		32	64						x86.nz						LGPL3			x86	handmade	assembler

ad		32									x86.olly				GPL2				OllyDBG	X86	disassembler

ad		8										z80									NC-GPL2	Zilog	Z80

Note	that	"ad"	in	the	first	column	means	both	assembler	and	disassembler	are	offered	by	a
corresponding	plugin.	"d"	indicates	disassembler,	"a"	means	only	assembler	is	available.

Rasm2

140

Assembler
	rasm2		can	be	used	from	the	command-line	to	quickly	copy-paste	hexpairs	that	represent	a
given	machine	instruction.

$	rasm2	-a	x86	-b	32	'mov	eax,	33'

b821000000

$	echo	'push	eax;nop;nop'	|	rasm2	-f	-

5090

Rasm2	is	used	by	radare2	core	to	write	bytes	using		wa		command.

The	assembler	understands	the	following	input	languages	and	their	flavors:	x86	(Intel	and
AT&T	variants),	olly	(OllyDBG	syntax),	powerpc	(PowerPC),	arm	and	java.	For	Intel	syntax,
rasm2	tries	to	mimic	NASM	or	GAS.

There	are	several	examples	in	the	rasm2	source	code	directory.	Consult	them	to	understand
how	you	can	assemble	a	raw	binary	file	from	a	rasm2	description.

Assemble

141

$	cat	selfstop.rasm

;

;	Self-Stop	shellcode	written	in	rasm	for	x86

;

;	--pancake

;

.arch	x86

.equ	base	0x8048000

.org	0x8048000		;	the	offset	where	we	inject	the	5	byte	jmp

selfstop:

		push	0x8048000

		pusha

		mov	eax,	20

		int	0x80

		mov	ebx,	eax	

		mov	ecx,	19

		mov	eax,	37

		int	0x80

		popa

		ret

;

;	The	call	injection

;

		ret

[0x00000000]>	e	asm.bits	=	32

[0x00000000]>	wx	`!rasm2	-f	a.rasm`

[0x00000000]>	pd	20

							0x00000000				6800800408			push	0x8048000	;		0x08048000	

							0x00000005				60											pushad

							0x00000006				b814000000			mov	eax,	0x14	;		0x00000014	

							0x0000000b				cd80									int	0x80

										syscall[0x80][0]=?

							0x0000000d				89c3									mov	ebx,	eax

							0x0000000f				b913000000			mov	ecx,	0x13	;		0x00000013	

							0x00000014				b825000000			mov	eax,	0x25	;		0x00000025	

							0x00000019				cd80									int	0x80

										syscall[0x80][0]=?

							0x0000001b				61											popad

							0x0000001c				c3											ret

							0x0000001d				c3											ret

Assemble

142

Disassembler
Passing	the		-d		option	to	rasm2	allows	you	to	disassemble	a	hexpair	string:

$	rasm2	-a	x86	-b	32	-d	'90'

nop

Disassemble

143

Purpose
ragg2	compiles	programs	written	in	a	simple	high-level	language	into	tiny	binaries	for	x86,
x86-64,	and	ARM.

Syntax	of	the	language
The	code	of	r_egg	is	compiled	as	in	a	flow.	It	is	a	one-pass	compiler;

this	means	that	you	have	to	define	the	proper	stackframe	size	at	the

beginning	of	the	function,	and	you	have	to	define	the	functions	in

order	to	avoid	getting	compilation	errors.

The	compiler	generates	assembly	code	for	x86-{32,64}	and	arm.	But	it	aims

to	support	more	platforms.	This	code	is	the	compiled	with	r_asm	and

injected	into	a	tiny	binary	with	r_bin.

You	may	like	to	use	r_egg	to	create	standalone	binaries,	position-

independent	raw	eggs	to	be	injected	on	running	processes	or	to	patch

on-disk	binaries.

The	generated	code	is	not	yet	optimized,	but	it's	safe	to	be	executed

at	any	place	in	the	code.

Preprocessor

Aliases

Sometimes	you	just	need	to	replace	at	compile	time	a	single	entity	on

multiple	places.	Aliases	are	translated	into	'equ'	statements	in	assembly

language.	This	is	just	an	assembler-level	keyword	redefinition.

	AF_INET@alias(2);	

	printf@alias(0x8053940);	

Ragg2

144

Includes

Use		cat(1)		or	the	preprocessor	to	concatenate	multiple	files	to	be	compiled.

It's	not	a	task	of	a	compiler	to	look	for	external	sources,	so	it's	a

delegated	task	right	now..	but	we	will	probably	add	native	support	for

spp	(merge	into)

TODO:	this	is	not	yet	implemented

	INCDIR@alias("/usr/include/ragg2");	

	sys-osx.r@include(INCDIR);	

Hashbang

eggs	can	use	a	hashbang	to	make	them	executable.

	$	head	-n1	hello.r	

	#!/usr/bin/ragg2	-X	

	$./hello.r	

	Hello	World!	

Main

The	execution	of	the	code	is	done	as	in	a	flow.	The	first	function	to	be

defined	will	be	the	first	one	to	be	executed.	If	you	want	to	run	main()

just	do	like	this:

	#!/usr/bin/ragg2	-X	

	main();	

	...	

	main@global(128,64)	{	

	...	

Function	definition

You	may	like	to	split	up	your	code	into	several	code	blocks.	Those	blocks

are	bound	to	a	label	followed	by	root	brackets	'{	...	}'

Ragg2

145

Function	signatures
	name@type(stackframesize,staticframesize)	{	body	}	

	name		:	name	of	the	function	to	define

	type		:	see	function	types	below

	stackframesize		:	get	space	from	stack	to	store	local	variables

	staticframesize		:	get	space	from	stack	to	store	static	variables	(strings)

	body		:	code	of	the	function

Function	types

	alias		Used	to	create	aliases

	data		;	the	body	of	the	block	is	defined	in	.data

	inline		;	the	function	body	is	inlined	when	called

	global		;	make	the	symbol	global

	fastcall		;	function	that	is	called	using	the	fast	calling	convention

	syscall		;	define	syscall	calling	convention	signature

Syscalls

r_egg	offers	a	syntax	sugar	for	defining	syscalls.	The	syntax	is	like	this:

	exit@syscall(1);	

	@syscall()	{	

	̀ 	:	mov	eax,	.arg```

	:	int	0x80	

	}	

	main@global()	{	

	exit	(0);	

	}	

Libraries

At	the	moment	there	is	no	support	for	linking	r_egg	programs	to	system

Ragg2

146

libraries.	but	if	you	inject	the	code	into	a	program	(disk/memory)	you

can	define	the	address	of	each	function	using	the	@alias	syntax.

Core	library

There's	a	work-in-progress	libc-like	library	written	completely	in	r_egg

Variables
	.arg	

	.arg0	

	.arg1	

	.arg2	

	.var0	

	.var2	

	.fix	

	.ret	;	eax	for	x86,	r0	for	arm	

	.bp	

	.pc	

	.sp	

Arrays

Supported	as	raw	pointers.	TODO:	enhance	this	feature

Tracing

Sometimes	r_egg	programs	will	break	or	just	not	work	as	expected.	Use	the

'trace'	architecture	to	get	a	arch-backend	call	trace:

	$	ragg2	-a	trace	-s	yourprogram.r	

Pointers

TODO:	Theorically	'*'	is	used	to	get	contents	of	a	memory	pointer.

Virtual	registers

Ragg2

147

TODO:	a0,	a1,	a2,	a3,	sp,	fp,	bp,	pc

Return	values

The	return	value	is	stored	in	the	a0	register,	this	register	is	set	when

calling	a	function	or	when	typing	a	variable	name	without	assignment.

	$	cat	test.r	

	add@global(4)	{	

	.var0	=	.arg0	+	.arg1;	

	.var0;	

	}	

	main@global()	{	

	add	(3,4);	

	}	

			

	$	ragg2	-F	-o	test	test.r	

	$./test	

	$	echo	$?	

	7	

Traps

Each	architecture	have	a	different	instruction	to	break	the	execution	of

the	program.	REgg	language	captures	calls	to	'break()'	to	run	the	emit_trap

callback	of	the	selected	arch.	The

	break()	;	-->	compiles	into	'int3'	on	x86

	break;		-->	compiles	into	'int3'	on	x86

Inline	assembly

Lines	prefixed	with	':'	char	are	just	inlined	in	the	output	assembly.

	:	jmp	0x8048400	

	:	.byte	33,44	

Ragg2

148

Labels

You	can	define	labels	using	the		:		keyword	like	this:

	:label_name:	

	/*	loop	forever	*/	

	goto(label_name)

Control	flow

	goto	(addr)		--	branch	execution

	while	(cond)	

	if	(cond)	

	break	()		--	executes	a	trap	instruction

Comments

Supported	syntax	for	comments	are:

	/*	multiline	comment	*/'	

	//	single	line	comment	

	#	single	line	comment	

Ragg2

149

Data	and	Code	Analysis
There	are	different	commands	to	perform	data	and	code	analysis,	to	extract	useful
information	from	a	binary,	like	pointers,	string	references,	basic	blocks,	opcode	data,	jump
targets,	xrefs,	etc.	These	operations	are	handled	by	the		a		(analyze)	command	family:

|Usage:	a[?adfFghoprsx]

|	a8	[hexpairs]				analyze	bytes

|	aa															analyze	all	(fcns	+	bbs)

|	ad															analyze	data	trampoline	(wip)

|	ad	[from]	[to]			analyze	data	pointers	to	(from-to)

|	ae	[expr]								analyze	opcode	eval	expression	(see	ao)

|	af[rnbcsl?+-*]			analyze	Functions

|	aF															same	as	above,	but	using	graph.depth=1

|	ag[?acgdlf]						output	Graphviz	code

|	ah[?lba-]								analysis	hints	(force	opcode	size,	...)

|	ao[e?]	[len]					analyze	Opcodes	(or	emulate	it)

|	ap															find	and	analyze	function	preludes

|	ar[?ld-*]								manage	refs/xrefs	(see	also	afr?)

|	as	[num]									analyze	syscall	using	dbg.reg

|	at[trd+-*?]	[.]		analyze	execution	Traces

|Examples:

|	f	ts	@	`S*~text:0[3]`;	f	t	@	section..text

|	f	ds	@	`S*~data:0[3]`;	f	d	@	section..data

|	.ad	t	t+ts	@	d:ds

Analysis

150

Code	Analysis
Code	analysis	is	a	common	technique	used	to	extract	information	from	assembly	code.
Radare	uses	internal	data	structures	to	identify	basic	blocks,	function	trees,	to	extract
opcode-level	information	etc.	The	most	common	radare2	analysis	command	sequence	is:

[0x08048440]>	aa

[0x08048440]>	pdf	@	main

											;	DATA	XREF	from	0x08048457	(entry0)

/	(fcn)	fcn.08048648	141

|										;--	main:

|										0x08048648				8d4c2404					lea	ecx,	[esp+0x4]

|										0x0804864c				83e4f0							and	esp,	0xfffffff0

|										0x0804864f				ff71fc							push	dword	[ecx-0x4]

|										0x08048652				55											push	ebp

|										;	CODE	(CALL)	XREF	from	0x08048734	(fcn.080486e5)

|										0x08048653				89e5									mov	ebp,	esp

|										0x08048655				83ec28							sub	esp,	0x28

|										0x08048658				894df4							mov	[ebp-0xc],	ecx

|										0x0804865b				895df8							mov	[ebp-0x8],	ebx

|										0x0804865e				8975fc							mov	[ebp-0x4],	esi

|										0x08048661				8b19									mov	ebx,	[ecx]

|										0x08048663				8b7104							mov	esi,	[ecx+0x4]

|										0x08048666				c744240c000.	mov	dword	[esp+0xc],	0x0

|										0x0804866e				c7442408010.	mov	dword	[esp+0x8],	0x1	;		0x00000001	

|										0x08048676				c7442404000.	mov	dword	[esp+0x4],	0x0

|										0x0804867e				c7042400000.	mov	dword	[esp],	0x0

|										0x08048685				e852fdffff			call	sym..imp.ptrace

|													sym..imp.ptrace(unk,	unk)

|										0x0804868a				85c0									test	eax,	eax

|						,=<	0x0804868c				7911									jns	0x804869f

|						|			0x0804868e				c70424cf870.	mov	dword	[esp],	str.Don_tuseadebuguer_	;		0x080

487cf	

|						|			0x08048695				e882fdffff			call	sym..imp.puts

|						|						sym..imp.puts()

|						|			0x0804869a				e80dfdffff			call	sym..imp.abort

|						|						sym..imp.abort()

|						`->	0x0804869f				83fb02							cmp	ebx,	0x2

|					,==<	0x080486a2				7411									je	0x80486b5

|					|				0x080486a4				c704240c880.	mov	dword	[esp],	str.Youmustgiveapasswordforuset

hisprogram_	;		0x0804880c	

|					|				0x080486ab				e86cfdffff			call	sym..imp.puts

|					|							sym..imp.puts()

|					|				0x080486b0				e8f7fcffff			call	sym..imp.abort

|					|							sym..imp.abort()

|					`-->	0x080486b5				8b4604							mov	eax,	[esi+0x4]

|										0x080486b8				890424							mov	[esp],	eax

|										0x080486bb				e8e5feffff			call	fcn.080485a5

Code	Analysis

151

|													fcn.080485a5()	;	fcn.080484c6+223

|										0x080486c0				b800000000			mov	eax,	0x0

|										0x080486c5				8b4df4							mov	ecx,	[ebp-0xc]

|										0x080486c8				8b5df8							mov	ebx,	[ebp-0x8]

|										0x080486cb				8b75fc							mov	esi,	[ebp-0x4]

|										0x080486ce				89ec									mov	esp,	ebp

|										0x080486d0				5d											pop	ebp

|										0x080486d1				8d61fc							lea	esp,	[ecx-0x4]

\										0x080486d4				c3											ret

In	this	example,	we	analyze	the	whole	file	(aa)	and	then	print	disassembly	of	the		main()	
function	(pdf).

Code	Analysis

152

Obtaining	Hashes	within	Radare2	Session
To	calculate	a	checksum	of	current	block	when	running	radare2,	use	the	'ph'	command.
Pass	an	algorithm	name	to	it	as	a	parameter.	An	example	session:

$	radare2	/bin/ls

[0x08049790]>	bf	entry0

[0x08049790]>	ph	md5

d2994c75adaa58392f953a448de5fba7

You	can	use	all	hashing	algorithms	supported	by		rahash2	:

[0x00404890]>	ph?

md5

sha1

sha256

sha384

sha512

crc16

crc32

md4

xor

xorpair

parity

entropy

hamdist

pcprint

mod255

xxhash

adler32

luhn

The		ph		command	accepts	an	optional	numeric	argument	to	specify	length	of	byte	range	to
be	hashed,	instead	of	default	block	size.	For	example:

[0x08049A80]>	ph	md5	32

9b9012b00ef7a94b5824105b7aaad83b

[0x08049A80]>	ph	md5	64

a71b087d8166c99869c9781e2edcf183

[0x08049A80]>	ph	md5	1024

a933cc94cd705f09a41ecc80c0041def

[0x08049A80]>	

Rahash2

153

Rahash2

154

Rahash2
The	rahash2	tool	can	be	used	to	calculate	checksums	and	has	functions	of	byte	streams,
files,	text	strings.

$	rahash2	-h

Usage:	rahash2	[-rBhLkv]	[-b	sz]	[-a	algo]	[-s	str]	[-f	from]	[-t	to]	[file]	...

-a	algo					comma	separated	list	of	algorithms	(default	is	'sha256')

-b	bsize				specify	the	size	of	the	block	(instead	of	full	file)

-B										show	per-block	hash

-e										swap	endian	(use	little	endian)

-f	from					start	hashing	at	given	address

-i	num						repeat	hash	N	iterations

-S	seed					use	given	seed	(hexa	or	s:string)	use	^	to	prefix

-k										show	hash	using	the	openssh's	randomkey	algorithm

-q										run	in	quiet	mode	(only	show	results)

-L										list	all	available	algorithms	(see	-a)

-r										output	radare	commands

-s	string			hash	this	string	instead	of	files

-t	to							stop	hashing	at	given	address

-v										show	version	information

To	obtain	an	MD5	hash	value	of	a	text	string,	use	the		-s		option:

$	rahash2	-q	-a	md5	-s	'hello	world'

5eb63bbbe01eeed093cb22bb8f5acdc3

It	is	possible	to	calculate	hash	values	for	contents	of	files.	But	do	not	attempt	to	do	it	for	very
large	files	because	rahash2	buffers	the	whole	input	in	memory	before	computing	the	hash.

To	apply	all	algorithms	known	to	rahash2,	use		all		as	an	algorithm	name:

Rahash	Tool

155

$	rahash2	-a	all	/bin/ls

/bin/ls:	0x00000000-0x0001ae08	md5:	b5607b4dc7d896c0fab5c4a308239161

/bin/ls:	0x00000000-0x0001ae08	sha1:	c8f5032c2dce807c9182597082b94f01a3bec495

/bin/ls:	0x00000000-0x0001ae08	sha256:	978317d58e3ed046305df92a19f7d3e0bfcb3c70cad979f

24fee289ed1d266b0

/bin/ls:	0x00000000-0x0001ae08	sha384:	9e946efdbebb4e0ca00c86129ce2a71ee734ac30b620336

c381aa929dd222709e4cf7a800b25fbc7d06fe3b184933845

/bin/ls:	0x00000000-0x0001ae08	sha512:	076806cedb5281fd15c21e493e12655c55c52537fc1f36e

641b57648f7512282c03264cf5402b1b15cf03a20c9a60edfd2b4f76d4905fcec777c297d3134f41f

/bin/ls:	0x00000000-0x0001ae08	crc16:	4b83

/bin/ls:	0x00000000-0x0001ae08	crc32:	6e316348

/bin/ls:	0x00000000-0x0001ae08	md4:	3a75f925a6a197d26bc650213f12b074

/bin/ls:	0x00000000-0x0001ae08	xor:	3e

/bin/ls:	0x00000000-0x0001ae08	xorpair:	59

/bin/ls:	0x00000000-0x0001ae08	parity:	01

/bin/ls:	0x00000000-0x0001ae08	entropy:	0567f925

/bin/ls:	0x00000000-0x0001ae08	hamdist:	00

/bin/ls:	0x00000000-0x0001ae08	pcprint:	23

/bin/ls:	0x00000000-0x0001ae08	mod255:	1e

/bin/ls:	0x00000000-0x0001ae08	xxhash:	138c936d

/bin/ls:	0x00000000-0x0001ae08	adler32:	fca7131b

Rahash	Tool

156

Debugger
Debuggers	are	implemented	as	IO	plugins.	Therefore,	radare	can	handle	different	URI	types
for	spawning,	attaching	and	controlling	processes.	The	complete	list	of	IO	plugins	can	be
viewed	with		r2	-L	.	Those	that	have	"d"	in	the	first	column	("rwd")	support	debugging.	For
example:

r_d		debug							Debug	a	program	or	pid.	dbg:///bin/ls,	dbg://1388	(LGPL3)

rwd		gdb									Attach	to	gdbserver,	'qemu	-s',	gdb://localhost:1234	(LGPL3)

There	are	different	backends	for	many	target	architectures	and	operating	systems,	e.g.,
GNU/Linux,	Windows,	MacOS	X,	(Net,Free,Open)BSD	and	Solaris.

Process	memory	is	treated	as	a	plain	file.	All	mapped	memory	pages	of	a	debugged
program	and	its	libraries	can	be	read	and	interpreted	as	code,	data	structures	etc.

Communication	between	radare	and	the	debugger	IO	layer	is	wrapped	into		system()		calls,
which	accept	a	string	as	an	argument,	and	executes	it	as	a	command.	An	answer	is	then
buffered	in	the	output	console,	its	contents	can	be	additionally	processed	by	a	script.	This	is
how	radare	handles	single		!		and	double		!!		exclamation	mark	commands	for	calling
	system()	:

[0x00000000]>	ds

[0x00000000]>	!!ls

The	double	exclamation	mark		!!		tells	radare	to	skip	the	IO	plugin	list,	and	to	pass	the	rest
of	the	command	directly	to	shell.	Using	the	single		!		to	prepend	a	command	will	cause	a
walk	through	the	IO	plugin	list	to	find	one	that	handles	it.

In	general,	debugger	commands	are	portable	between	architectures	and	operating	systems.
Still,	as	radare	tries	to	support	the	same	functionality	for	all	target	architectures	and
operating	systems,	certain	things	have	to	be	handled	separately.	They	include	injecting
shellcodes	and	handling	exceptions.	For	example,	in	MIPS	targets	there	is	no	hardware-
supported	single-stepping	feature.	In	this	case,	radare2	provides	its	own	implementation	for
single-step	by	using	a	mix	of	code	analysis	and	software	breakpoints.

To	get	basic	help	for	the	debugger,	type	'd?':

Debugger

157

Usage:	d[sbhcrbo]	[arg]

dh	[handler]			list	or	set	debugger	handler

dH	[handler]			transplant	process	to	a	new	handler

dd													file	descriptors	(!fd	in	r1)

ds[ol]	N							step,	over,	source	line

do													open	process	(reload,	alias	for	'oo')

dk	[sig][=act]	list,	send,	get,	set,	signal	handlers	of	child

di[s]	[arg..]		inject	code	on	running	process	and	execute	it	(See	gs)

dp[=*?t][pid]		list,	attach	to	process	or	thread	id

dc[?]										continue	execution.	dc?	for	more

dr[?]										cpu	registers,	dr?	for	extended	help

db[?]										breakpoints

dbt												display	backtrace

dt[?r]	[tag]			display	instruction	traces	(dtr=reset)

dm[?*]									show	memory	maps

dw	[pid]							block	prompt	until	pid	dies

To	restart	your	debugging	session,	you	can	type		oo		or		oo+	,	depending	on	desired
behavior.

oo																	reopen	current	file	(kill+fork	in	debugger)

oo+																reopen	current	file	in	read-write

Debugger

158

Getting	Started

Small	session	in	radare2	debugger
	r2	-d	/bin/ls	:	Opens	radare2	with	file		/bin/ls		in	debugger	mode	using	the	radare2
native	debugger,	but	does	not	run	the	program.	You’ll	see	a	prompt	(radare2)	-	all
examples	are	from	this	prompt.

	db	flag	:	place	a	breakpoint	at	flag,	where	flag	can	be	either	an	address	or	a	function
name

	db	-	flag	:	remove	the	breakpoint	at	flag,	where	flag	can	be	either	an	address	or	a
function	name

	db	:	show	list	of	breakpoint

	dc	:	run	the	program

	dr	:	Show	registers	state

	drr	:	Show	registers	references	(telescoping)	(like	peda)

	ds	:	Step	into	instruction

	dso	:	Step	over	instruction

	dbt	:	Display	backtrace

	dm	:	Show	memory	maps

	dk	<signal>	:	Send	KILL	signal	to	child

	ood	:	reopen	in	debug	mode

	ood	arg1	arg2	:	reopen	in	debug	mode	with	arg1	and	arg2

Getting	Started

159

Registers
The	registers	are	part	of	a	user	area	stored	in	the	context	structure	used	by	the	scheduler.
This	structure	can	be	manipulated	to	get	and	set	the	values	of	those	registers,	and,	for
example,	on	Intel	hosts,	it	is	possible	to	directly	manipulate	DR0-DR7	hardware	registers	to
set	hardware	breakpoints.

There	are	different	commands	to	get	values	of	registers.	For	the	General	Purpose	ones	use:

[0x4A13B8C0]>	dr

r15	=	0x00000000

r14	=	0x00000000

r13	=	0x00000000

r12	=	0x00000000

rbp	=	0x00000000

rbx	=	0x00000000

r11	=	0x00000000

r10	=	0x00000000

r9	=	0x00000000

r8	=	0x00000000

rax	=	0x00000000

rcx	=	0x00000000

rdx	=	0x00000000

rsi	=	0x00000000

rdi	=	0x00000000

oeax	=	0x0000003b

rip	=	0x7f20bf5df630

rsp	=	0x7fff515923c0

[0x7f0f2dbae630]>	dr?rip	;	get	value	of	'rip'

0x7f0f2dbae630

[0x4A13B8C0]>	dr	rip	=	esp			;	set	'rip'	as	esp

Interaction	between	a	plugin	and	the	core	is	done	by	commands	returning	radare
instructions.	This	is	used,	for	example,	to	set	flags	in	the	core	to	set	values	of	registers.

Registers

160

[0x7f0f2dbae630]>	dr*						;	Appending	'*'	will	show	radare	commands

f	r15	1	0x0

f	r14	1	0x0

f	r13	1	0x0

f	r12	1	0x0

f	rbp	1	0x0

f	rbx	1	0x0

f	r11	1	0x0

f	r10	1	0x0

f	r9	1	0x0

f	r8	1	0x0

f	rax	1	0x0

f	rcx	1	0x0

f	rdx	1	0x0

f	rsi	1	0x0

f	rdi	1	0x0

f	oeax	1	0x3b

f	rip	1	0x7fff73557940

f	rflags	1	0x200

f	rsp	1	0x7fff73557940

[0x4A13B8C0]>	.dr*		;	include	common	register	values	in	flags

An	old	copy	of	registers	is	stored	all	the	time	to	keep	track	of	the	changes	done	during
execution	of	a	program	being	analyzed.	This	old	copy	can	be	accessed	with		oregs	.

Registers

161

		[0x7f1fab84c630]>	dro

		r15	=	0x00000000

		r14	=	0x00000000

		r13	=	0x00000000

		r12	=	0x00000000

		rbp	=	0x00000000

		rbx	=	0x00000000

		r11	=	0x00000000

		r10	=	0x00000000

		r9	=	0x00000000

		r8	=	0x00000000

		rax	=	0x00000000

		rcx	=	0x00000000

		rdx	=	0x00000000

		rsi	=	0x00000000

		rdi	=	0x00000000

		oeax	=	0x0000003b

		rip	=	0x7f1fab84c630

		rflags	=	0x00000200

		rsp	=	0x7fff386b5080

		[0x7f1fab84c630]>	dr

		r15	=	0x00000000

		r14	=	0x00000000

		r13	=	0x00000000

		r12	=	0x00000000

		rbp	=	0x00000000

		rbx	=	0x00000000

		r11	=	0x00000000

		r10	=	0x00000000

		r9	=	0x00000000

		r8	=	0x00000000

		rax	=	0x00000000

		rcx	=	0x00000000

		rdx	=	0x00000000

		rsi	=	0x00000000

		rdi	=	0x7fff386b5080

		oeax	=	0xffffffffffffffff

		rip	=	0x7f1fab84c633

		rflags	=	0x00000202

		rsp	=	0x7fff386b5080

Values	stored	in	eax,	oeax	and	eip	have	changed.

To	store	and	restore	register	values	you	can	just	dump	the	output	of	'dr*'	command	to	disk
and	then	re-interpret	it	again:

[0x4A13B8C0]>	dr*	>	regs.saved	;	save	registers

[0x4A13B8C0]>	drp	regs.saved	;	restore

Registers

162

EFLAGS	can	be	similarly	altered.	E.g.,	setting	selected	flags:

[0x4A13B8C0]>	dr	eflags	=	pst

[0x4A13B8C0]>	dr	eflags	=	azsti

You	can	get	a	string	which	represents	latest	changes	of	registers	using		drd		command	(diff
registers):

[0x4A13B8C0]>	drd

oeax	=	0x0000003b	was	0x00000000	delta	59

rip	=	0x7f00e71282d0	was	0x00000000	delta	-418217264

rflags	=	0x00000200	was	0x00000000	delta	512

rsp	=	0x7fffe85a09c0	was	0x00000000	delta	-396752448

Registers

163

Remote	Access	Capabilities
Radare	can	be	run	locally,	or	it	can	be	started	as	a	server	process	which	is	controlled	by	a
local	radare2	process.	This	is	possible	because	everything	uses	radare's	IO	subsystem
which	abstracts	access	to	system(),	cmd()	and	all	basic	IO	operations	so	to	work	over	a
network.

Help	for	commands	useful	for	remote	access	to	radare:

[0x00405a04]>	=?

|Usage:		=[:!+-=hH]	[...]	#	radare	remote	command	execution	protocol

|	

rap	commands:					

|	=																		list	all	open	connections

|	=<[fd]	cmd									send	output	of	local	command	to	remote	fd

|	=[fd]	cmd										exec	cmd	at	remote	'fd'	(last	open	is	default	one)

|	=!	cmd													run	command	via	r_io_system

|	=+	[proto://]host		add	host	(default=rap://,	tcp://,	udp://)

|	=-[fd]													remove	all	hosts	or	host	'fd'

|	==[fd]													open	remote	session	with	host	'fd',	'q'	to	quit

|	

rap	server:							

|	=:port													listen	on	given	port	using	rap	protocol	(o	rap://9999)

|	=:host:port	cmd				run	'cmd'	command	on	remote	server

|	

http	server:

|	=h	port												listen	for	http	connections	(r2	-qc=H	/bin/ls)

|	=h-																stop	background	webserver

|	=h*																restart	current	webserver

|	=h&	port											start	http	server	in	background)

|	=H	port												launch	browser	and	listen	for	http

|	=H&	port											launch	browser	and	listen	for	http	in	background

You	can	learn	radare2	remote	capabilities	by	displaying	the	list	of	supported	IO	plugins:
	radare2	-L	.

A	little	example	should	make	this	clearer.	A	typical	remote	session	might	look	like	this:

At	the	remote	host1:

$	radare2	rap://:1234

At	the	remote	host2:

Remoting	Capabilities

164

$	radare2	rap://:1234

At	localhost:

$	radare2	-

;	Add	hosts

[0x004048c5]>	=+	rap://<host1>:1234//bin/ls

Connected	to:	<host1>	at	port	1234

waiting...	ok

[0x004048c5]>	=

0	-	rap://<host1>:1234//bin/ls

You	can	open	remote	files	in	debug	mode	(or	using	any	IO	plugin)	specifying	URI	when
adding	hosts:

[0x004048c5]>	=+	=+	rap://<host2>:1234/dbg:///bin/ls

Connected	to:	<host2>	at	port	1234

waiting...	ok

0	-	rap://<host1>:1234//bin/ls

1	-	rap://<host2>:1234/dbg:///bin/ls

To	execute	commands	on	host1:

[0x004048c5]>	=0	px

[0x004048c5]>	=	s	0x666

To	open	a	session	with	host2:

[0x004048c5]>	==1

fd:6>	pi	1

...

fd:6>	q

To	remove	hosts	(and	close	connections):

[0x004048c5]>	=-

Remoting	Capabilities

165

You	can	also	redirect	radare	output	to	a	TCP	or	UDP	server	(such	as		nc	-l).	First,	Add	the
server	with	'=+	tcp://'	or	'=+	udp://',	then	you	can	redirect	the	output	of	a	command	to	be	sent
to	the	server:

	[0x004048c5]>	=+	tcp://<host>:<port>/

Connected	to:	<host>	at	port	<port>

5	-	tcp://<host>:<port>/

[0x004048c5]>	=<5	cmd...

The		=<'	command	will	send	the	output	from	the	execution	of	cmd`	to	the	remote	connection
number	N	(or	the	last	one	used	if	no	id	specified).

Remoting	Capabilities

166

Plugins

IO	plugins
All	access	to	files,	network,	debugger,	etc.	is	wrapped	by	an	IO	abstraction	layer	that	allows
radare	to	treat	all	data	as	if	it	were	just	a	file.

IO	plugins	are	the	ones	used	to	wrap	the	open,	read,	write	and	'system'	on	virtual	file
systems.	You	can	make	radare	understand	anything	as	a	plain	file.	E.g.,	a	socket
connection,	a	remote	radare	session,	a	file,	a	process,	a	device,	a	gdb	session,	etc..

So,	when	radare	reads	a	block	of	bytes,	it	is	the	task	of	an	IO	plugin	to	get	these	bytes	from
any	place	and	put	them	into	internal	buffer.	An	IO	plugin	is	chosen	by	a	file's	URI	to	be
opened.	Some	examples:

Debugging	URIs

$	r2	dbg:///bin/ls	$	r2	pid://1927

Remote	sessions

$	r2	rap://:1234	$	r2	rap://:1234//bin/ls

Virtual	buffers

$	r2	malloc://512	shortcut	for	$	r2	-

You	can	get	a	list	of	the	radare	IO	plugins	by	typing		radare2	-L	:

Plugins

167

$	r2	-L

rw_		zip									Open	zip	files	apk://foo.apk//MANIFEST	or	zip://foo.apk//theclass/fun

.class,	show	files	with:	zip://foo.apk/,	open	all	files	with	zipall://	(BSD)

rwd		windbg						Attach	to	a	KD	debugger	(LGPL3)

rw_		sparse						sparse	buffer	allocation	(sparse://1024	sparse://)	(LGPL3)

rw_		shm									shared	memory	resources	(shm://key)	(LGPL3)

rw_		self								read	memory	from	myself	using	'self://'	(LGPL3)

rw_		rap									radare	network	protocol	(rap://:port	rap://host:port/file)	(LGPL3)

rwd		ptrace						ptrace	and	/proc/pid/mem	(if	available)	io	(LGPL3)

rw_		procpid					/proc/pid/mem	io	(LGPL3)

rw_		mmap								open	file	using	mmap://	(LGPL3)

rw_		malloc						memory	allocation	(malloc://1024	hex://cd8090)	(LGPL3)

r__		mach								mach	debug	io	(unsupported	in	this	platform)	(LGPL)

rw_		ihex								Intel	HEX	file	(ihex://eeproms.hex)	(LGPL)

rw_		http								http	get	(http://radare.org/)	(LGPL3)

rw_		gzip								read/write	gzipped	files	(LGPL3)

rwd		gdb									Attach	to	gdbserver,	'qemu	-s',	gdb://localhost:1234	(LGPL3)

r_d		debug							Debug	a	program	or	pid.	dbg:///bin/ls,	dbg://1388	(LGPL3)

rw_		bfdbg							BrainFuck	Debugger	(bfdbg://path/to/file)	(LGPL3)

Plugins

168

Crackmes
Crackmes	(from	"crack	me"	challenge)	are	the	training	ground	for	reverse	engineering
people.	This	section	will	go	over	tutorials	on	how	to	defeat	various	crackmes	using	r2.

Crackmes

169

IOLI	CrackMes
The	IOLI	crackme	is	a	good	starting	point	for	learning	r2.	This	is	a	set	of	tutorials	based	on
the	tutorial	at	dustri

The	IOLI	crackmes	are	available	at	a	locally	hosted	mirror

IOLI

170

http://dustri.org/b/defeating-ioli-with-radare2.html
https://github.com/radare/radare2book/tree/master/crackmes/ioli/IOLI-crackme.tar.gz

IOLI	0x00
This	is	the	first	IOLI	crackme,	and	the	easiest	one.

$./crackme0x00

IOLI	Crackme	Level	0x00

Password:	1234

Invalid	Password!

The	first	thing	to	check	is	if	the	password	is	just	plaintext	inside	the	file.	In	this	case,	we	don't
need	to	do	any	disassembly,	and	we	can	just	use	rabin2	with	the	-z	flag	to	search	for	strings
in	the	binary.

$	rabin2	-z	./crackme0x00

vaddr=0x08048568	paddr=0x00000568	ordinal=000	sz=25	len=24	section=.rodata	type=a	stri

ng=IOLI	Crackme	Level	0x00\n

vaddr=0x08048581	paddr=0x00000581	ordinal=001	sz=11	len=10	section=.rodata	type=a	stri

ng=Password:

vaddr=0x0804858f	paddr=0x0000058f	ordinal=002	sz=7	len=6	section=.rodata	type=a	string

=250382

vaddr=0x08048596	paddr=0x00000596	ordinal=003	sz=19	len=18	section=.rodata	type=a	stri

ng=Invalid	Password!\n

vaddr=0x080485a9	paddr=0x000005a9	ordinal=004	sz=16	len=15	section=.rodata	type=a	stri

ng=Password	OK	:)\n

So	we	know	what	the	following	section	is,	this	section	is	the	header	shown	when	the
application	is	run.

vaddr=0x08048568	paddr=0x00000568	ordinal=000	sz=25	len=24	section=.rodata	type=a	stri

ng=IOLI	Crackme	Level	0x00\n

Here	we	have	the	prompt	for	the	password.

vaddr=0x08048581	paddr=0x00000581	ordinal=001	sz=11	len=10	section=.rodata	type=a	stri

ng=Password:

This	is	the	error	on	entering	an	invalid	password.

vaddr=0x08048596	paddr=0x00000596	ordinal=003	sz=19	len=18	section=.rodata	type=a	stri

ng=Invalid	Password!\n

IOLI	0x00

171

This	is	the	message	on	the	password	being	accepted.

vaddr=0x080485a9	paddr=0x000005a9	ordinal=004	sz=16	len=15	section=.rodata	type=a	stri

ng=Password	OK	:)\n

But	what	is	this?	It's	a	string,	but	we	haven't	seen	it	in	running	the	application	yet.

vaddr=0x0804858f	paddr=0x0000058f	ordinal=002	sz=7	len=6	section=.rodata	type=a	string

=250382

Let's	give	this	a	shot.

$./crackme0x00

IOLI	Crackme	Level	0x00

Password:	250382

Password	OK	:)

So	we	now	know	that	250382	is	the	password,	and	have	completed	this	crackme.

IOLI	0x00

172

IOLI	0x01
This	is	the	second	IOLI	crackme.

$./crackme0x01

IOLI	Crackme	Level	0x01

Password:	test

Invalid	Password!

Let's	check	for	strings	with	rabin2.

$	rabin2	-z	./crackme0x01

vaddr=0x08048528	paddr=0x00000528	ordinal=000	sz=25	len=24	section=.rodata	type=a	stri

ng=IOLI	Crackme	Level	0x01\n

vaddr=0x08048541	paddr=0x00000541	ordinal=001	sz=11	len=10	section=.rodata	type=a	stri

ng=Password:

vaddr=0x0804854f	paddr=0x0000054f	ordinal=002	sz=19	len=18	section=.rodata	type=a	stri

ng=Invalid	Password!\n

vaddr=0x08048562	paddr=0x00000562	ordinal=003	sz=16	len=15	section=.rodata	type=a	stri

ng=Password	OK	:)\n

This	isn't	going	to	be	as	easy	as	0x00.	Let's	try	disassembly	with	r2.

IOLI	0x01

173

$	r2	./crackme0x01	--	Use	`zoom.byte=printable`	in	zoom	mode	('z'	in	Visual	mode)	to	f

ind	strings

[0x08048330]>	aa

[0x08048330]>	pdf@main

/	(fcn)	main	113

|										;	var	int	local_4	@	ebp-0x4

|										;	DATA	XREF	from	0x08048347	(entry0)

|										0x080483e4				55											push	ebp

|										0x080483e5				89e5									mov	ebp,	esp

|										0x080483e7				83ec18							sub	esp,	0x18

|										0x080483ea				83e4f0							and	esp,	-0x10

|										0x080483ed				b800000000			mov	eax,	0

|										0x080483f2				83c00f							add	eax,	0xf

|										0x080483f5				83c00f							add	eax,	0xf

|										0x080483f8				c1e804							shr	eax,	4

|										0x080483fb				c1e004							shl	eax,	4

|										0x080483fe				29c4									sub	esp,	eax

|										0x08048400				c7042428850.	mov	dword	[esp],	str.IOLI_Crackme_Level_0x01_n	;

	[0x8048528:4]=0x494c4f49		;	"IOLI	Crackme	Level	0x01."	@	0x8048528

|										0x08048407				e810ffffff			call	sym.imp.printf

|													sym.imp.printf(unk)

|										0x0804840c				c7042441850.	mov	dword	[esp],	str.Password_	;	[0x8048541:4]=0

x73736150		;	"Password:	"	@	0x8048541

|										0x08048413				e804ffffff			call	sym.imp.printf

|													sym.imp.printf()

|										0x08048418				8d45fc							lea	eax,	dword	[ebp	+	0xfffffffc]

|										0x0804841b				89442404					mov	dword	[esp	+	4],	eax	;	[0x4:4]=0x10101

|										0x0804841f				c704244c850.	mov	dword	[esp],	0x804854c	;	[0x804854c:4]=0x490

06425		;	"%d"	@	0x804854c

|										0x08048426				e8e1feffff			call	sym.imp.scanf

|													sym.imp.scanf()

|										0x0804842b				817dfc9a140.	cmp	dword	[ebp	+	0xfffffffc],	0x149a

|						,=<	0x08048432				740e									je	0x8048442

|						|			0x08048434				c704244f850.	mov	dword	[esp],	str.Invalid_Password__n	;	[0x80

4854f:4]=0x61766e49		;	"Invalid	Password!."	@	0x804854f

|						|			0x0804843b				e8dcfeffff			call	sym.imp.printf

|						|						sym.imp.printf()

|					,==<	0x08048440				eb0c									jmp	0x804844e	;	(main)

|					||			;	JMP	XREF	from	0x08048432	(main)

|					|`->	0x08048442				c7042462850.	mov	dword	[esp],	str.Password_OK____n	;	[0x80485

62:4]=0x73736150		;	"Password	OK	:)."	@	0x8048562

|					|				0x08048449				e8cefeffff			call	sym.imp.printf

|					|							sym.imp.printf()

|					|				;	JMP	XREF	from	0x08048440	(main)

|					`-->	0x0804844e				b800000000			mov	eax,	0

|										0x08048453				c9											leave

\										0x08048454				c3											ret

"aa"	tells	r2	to	analyze	the	whole	binary,	which	gets	you	symbol	names,	among	things.

"pdf"	stands	for

IOLI	0x01

174

Print

Disassemble

Function

This	will	print	the	disassembly	of	the	main	function,	or	the		main()		that	everyone	knows.	You
can	see	several	things	as	well:	weird	names,	arrows,	etc.

"imp."	stands	for	imports.	Those	are	imported	symbols,	like	printf()

"str."	stands	for	strings.	Those	are	strings	(obviously).

If	you	look	carefully,	you'll	see	a		cmp		instruction,	with	a	constant,	0x149a.		cmp		is	an	x86
compare	instruction,	and	the	0x	in	front	of	it	specifies	it	is	in	base	16,	or	hex	(hexadecimal).

0x0804842b				817dfc9a140.	cmp	dword	[ebp	+	0xfffffffc],	0x149a

You	can	use	radare2's		?		command	to	get	it	in	another	numeric	base.

[0x08048330]>	?	0x149a

5274	0x149a	012232	5.2K	0000:049a	5274	10011010	5274.0	0.000000

So	now	we	know	that	0x149a	is	5274	in	decimal.	Let's	try	this	as	a	password.

$./crackme0x01

IOLI	Crackme	Level	0x01

Password:	5274

Password	OK	:)

Bingo,	the	password	was	5274.	In	this	case,	the	password	function	at	0x0804842b	was
comparing	the	input	against	the	value,	0x149a	in	hex.	Since	user	input	is	usually	decimal,	it
was	a	safe	bet	that	the	input	was	intended	to	be	in	decimal,	or	5274.	Now,	since	we're
hackers,	and	curiosity	drives	us,	let's	see	what	happens	when	we	input	in	hex.

$./crackme0x01

IOLI	Crackme	Level	0x01

Password:	0x149a

Invalid	Password!

It	was	worth	a	shot,	but	it	doesn't	work.	That's	because		scanf()		will	take	the	0	in	0x149a	to
be	a	zero,	rather	than	accepting	the	input	as	actually	being	the	hex	value.

And	this	concludes	IOLI	0x01.

IOLI	0x01

175

IOLI	0x01

176

.intro
After	a	few	years	of	missing	out	on	wargames	at	Hacktivity,	this	year	I've	finally	found	the
time	to	begin,	and	almost	finish	(yeah,	I'm	quite	embarrassed	about	that	unfinished	webhack
:))	one	of	them.	There	were	3	different	games	at	the	conf,	and	I've	chosen	the	one	that	was
provided	by	avatao.	It	consisted	of	8	challenges,	most	of	them	being	basic	web	hacking
stuff,	one	sandbox	escape,	one	simple	buffer	overflow	exploitation,	and	there	were	two
reverse	engineering	exercises	too.	You	can	find	these	challenges	on
https://platform.avatao.com.

IOLI	0x01

177

https://hacktivity.com
https://avatao.com
https://platform.avatao.com

.radare2
I've	decided	to	solve	the	reversing	challenges	using	radare2,	a	free	and	open	source
reverse	engineering	framework.	I	have	first	learned	about	r2	back	in	2011.	during	a	huge
project,	where	I	had	to	reverse	a	massive,	11MB	statically	linked	ELF.	I	simply	needed
something	that	I	could	easily	patch	Linux	ELFs	with.	Granted,	back	then	I've	used	r2
alongside	IDA,	and	only	for	smaller	tasks,	but	I	loved	the	whole	concept	at	first	sight.	Since
then,	radare2	evolved	a	lot,	and	I	was	planning	for	some	time	now	to	solve	some	crackmes
with	the	framework,	and	write	writeups	about	them.	Well,	this	CTF	gave	me	the	perfect
opportunity	:)

Because	this	writeup	aims	to	show	some	of	r2's	features	besides	how	the	crackmes	can	be
solved,	I	will	explain	every	r2	command	I	use	in	blockquote	paragraphs	like	this	one:

r2	tip:	Always	use	?	or	-h	to	get	more	information!

If	you	know	r2,	and	just	interested	in	the	crackme,	feel	free	to	skip	those	parts!	Also	keep	in
mind	please,	that	because	of	this	tutorial	style	I'm	going	to	do	a	lot	of	stuff	that	you	just	don't
do	during	a	CTF,	because	there	is	no	time	for	proper	bookkeeping	(e.g.	flag	every	memory
area	according	to	its	purpose),	and	with	such	small	executables	you	can	succeed	without
doing	these	stuff.

A	few	advice	if	you	are	interested	in	learning	radare2	(and	frankly,	if	you	are	into	RE,	you
should	be	interested	in	learning	r2	:)):

The	framework	has	a	lot	of	supplementary	executables	and	a	vast	amount	of	functionality	-
and	they	are	very	well	documented.	I	encourage	you	to	read	the	available	docs,	and	use	the
built-in	help	(by	appending	a	?	to	any	command)	extensively!	E.g.:

IOLI	0x01

178

http://www.radare.org/r/

[0x00000000]>	?

Usage:	[.][times][cmd][~grep][@[@iter]addr!size][|>pipe]	;	...

Append	'?'	to	any	char	command	to	get	detailed	help

Prefix	with	number	to	repeat	command	N	times	(f.ex:	3x)

|%var	=valueAlias	for	'env'	command

|	*off[=[0x]value]					Pointer	read/write	data/values	(see	?v,	wx,	wv)

|	(macro	arg0	arg1)				Manage	scripting	macros

|	.[-|(m)|f|!sh|cmd]			Define	macro	or	load	r2,	cparse	or	rlang	file

|	=	[cmd]														Run	this	command	via	rap://

|	/																				Search	for	bytes,	regexps,	patterns,	..

|	!	[cmd]														Run	given	command	as	in	system(3)

|	#	[algo]	[len]							Calculate	hash	checksum	of	current	block

|	#!lang	[..]										Hashbang	to	run	an	rlang	script

|	a																				Perform	analysis	of	code

|	b																				Get	or	change	block	size

...

[0x00000000]>	a?

|Usage:	a[abdefFghoprxstc]	[...]

|	ab	[hexpairs]					analyze	bytes

|	aa																analyze	all	(fcns	+	bbs)	(aa0	to	avoid	sub	renaming)

|	ac	[cycles]							analyze	which	op	could	be	executed	in	[cycles]

|	ad																analyze	data	trampoline	(wip)

|	ad	[from]	[to]				analyze	data	pointers	to	(from-to)

|	ae	[expr]									analyze	opcode	eval	expression	(see	ao)

|	af[rnbcsl?+-*]				analyze	Functions

|	aF																same	as	above,	but	using	anal.depth=1

...

Also,	the	project	is	under	heavy	development,	there	is	no	day	without	commits	to	the	GitHub
repo.	So,	as	the	readme	says,	you	should	always	use	the	git	version!

Some	highly	recommended	reading	materials:

Cheatsheet	by	pwntester
Radare2	Book
Radare2	Blog
Radare2	Wiki

IOLI	0x01

179

https://github.com/pwntester/cheatsheets/blob/master/radare2.md
https://www.gitbook.com/book/radare/radare2book/details
http://radare.today
https://github.com/radare/radare2/wiki

.first_steps
OK,	enough	of	praising	r2,	lets	start	reversing	this	stuff.	First,	you	have	to	know	your	enemy:

[0x00	avatao]$	rabin2	-I	reverse4

pic						false

canary			true

nx							true

crypto			false

va							true

intrp				/lib64/ld-linux-x86-64.so.2

bintype		elf

class				ELF64

lang					c

arch					x86

bits					64

machine		AMD	x86-64	architecture

os							linux

subsys			linux

endian			little

stripped	true

static			false

linenum		false

lsyms				false

relocs			false

rpath				NONE

binsz				8620

r2	tip:	rabin2	is	one	of	the	handy	tools	that	comes	with	radare2.	It	can	be	used	to
extract	information	(imports,	symbols,	libraries,	etc.)	about	binary	executables.	As
always,	check	the	help	(rabin2	-h)!

So,	its	a	dynamically	linked,	stripped,	64bit	Linux	executable	-	nothing	fancy	here.	Let's	try	to
run	it:

[0x00	avatao]$./reverse4

?

Size	of	data:	2623

pamparam

Wrong!

[0x00	avatao]$	"\x01\x00\x00\x00"	|	./reverse4

Size	of	data:	1

IOLI	0x01

180

OK,	so	it	reads	a	number	as	a	size	from	the	standard	input	first,	than	reads	further,	probably
"size"	bytes/characters,	processes	this	input,	and	outputs	either	"Wrong!",	nothing	or
something	else,	presumably	our	flag.	But	do	not	waste	any	more	time	monkeyfuzzing	the
executable,	let's	fire	up	r2,	because	in	asm	we	trust!

[0x00	avatao]$	r2	-A	reverse4

	--	Heisenbug:	A	bug	that	disappears	or	alters	its	behavior	when	one	attempts	to	probe

	or	isolate	it.

[0x00400720]>

r2	tip:	The	-A	switch	runs	aa	command	at	start	to	analyze	all	referenced	code,	so	we
will	have	functions,	strings,	XREFS,	etc.	right	at	the	beginning.	As	usual,	you	can	get
help	with	?.

It	is	a	good	practice	to	create	a	project,	so	we	can	save	our	progress,	and	we	can	come
back	at	a	later	time:

[0x00400720]>	Ps	avatao_reverse4

avatao_reverse4

[0x00400720]>

r2	tip:	You	can	save	a	project	using	Ps	[file],	and	load	one	using	Po	[file].	With	the	-p
option,	you	can	load	a	project	when	starting	r2.

We	can	list	all	the	strings	r2	found:

[0x00400720]>	fs	strings

[0x00400720]>	f

0x00400e98	7	str.Wrong_

0x00400e9f	27	str.We_are_in_the_outer_space_

0x00400f80	18	str.Size_of_data:__u_n

0x00400f92	23	str.Such_VM__MuCH_reV3rse_

0x00400fa9	16	str.Use_everything_

0x00400fbb	9	str.flag.txt

0x00400fc7	26	str.You_won__The_flag_is:__s_n

0x00400fe1	21	str.Your_getting_closer_

[0x00400720]>

r2	tip:	r2	puts	so	called	flags	on	important/interesting	offsets,	and	organizes	these	flags
into	flagspaces	(strings,	functions,	symbols,	etc.)	You	can	list	all	flagspaces	using	fs,
and	switch	the	current	one	using	fs	[flagspace]	(the	default	is	*,	which	means	all	the
flagspaces).	The	command	f	prints	all	flags	from	the	currently	selected	flagspace(s).

OK,	the	strings	looks	interesting,	especially	the	one	at	0x00400f92.	It	seems	to	hint	that	this
crackme	is	based	on	a	virtual	machine.	Keep	that	in	mind!

IOLI	0x01

181

These	strings	could	be	a	good	starting	point	if	we	were	talking	about	a	real-life	application
with	many-many	features.	But	we	are	talking	about	a	crackme,	and	they	tend	to	be	small
and	simple,	and	focused	around	the	problem	to	be	solved.	So	I	usually	just	take	a	look	at	the
entry	point(s)	and	see	if	I	can	figure	out	something	from	there.	Nevertheless,	I'll	show	you
how	to	find	where	these	strings	are	used:

[0x00400720]>	axt	@@=`f~[0]`

d	0x400cb5	mov	edi,	str.Size_of_data:__u_n

d	0x400d1d	mov	esi,	str.Such_VM__MuCH_reV3rse_

d	0x400d4d	mov	edi,	str.Use_everything_

d	0x400d85	mov	edi,	str.flag.txt

d	0x400db4	mov	edi,	str.You_won__The_flag_is:__s_n

d	0x400dd2	mov	edi,	str.Your_getting_closer_

r2	tip:	We	can	list	crossreferences	to	addresses	using	the	axt	[addr]	command
(similarly,	we	can	use	axf	to	list	references	from	the	address).	The	@@	is	an	iterator,	it
just	runs	the	command	once	for	every	arguments	listed.

The	argument	list	in	this	case	comes	from	the	command	f~[0].	It	lists	the	strings	from
the	executable	with	f,	and	uses	the	internal	grep	command	~	to	select	only	the	first
column	([0])	that	contains	the	strings'	addresses.

IOLI	0x01

182

.main
As	I	was	saying,	I	usually	take	a	look	at	the	entry	point,	so	let's	just	do	that:

[0x00400720]>	s	main

[0x00400c63]>

r2	tip:	You	can	go	to	any	offset,	flag,	expression,	etc.	in	the	executable	using	the	s
command	(seek).	You	can	use	references,	like	$$	(current	offset),	you	can	undo	(s-)	or
redo	(s+)	seeks,	search	strings	(s/	[string])	or	hex	values	(s/x	4142),	and	a	lot	of	other
useful	stuff.	Make	sure	to	check	out	s?!

Now	that	we	are	at	the	beginning	of	the	main	function,	we	could	use	p	to	show	a
disassembly	(pd,	pdf),	but	r2	can	do	something	much	cooler:	it	has	a	visual	mode,	and	it	can
display	graphs	similar	to	IDA,	but	way	cooler,	since	they	are	ASCII-art	graphs	:)

r2	tip:	The	command	family	p	is	used	to	print	stuff.	For	example	it	can	show
disassembly	(pd),	disassembly	of	the	current	function	(pdf),	print	strings	(ps),	hexdump
(px),	base64	encode/decode	data	(p6e,	p6d),	or	print	raw	bytes	(pr)	so	you	can	for
example	dump	parts	of	the	binary	to	other	files.	There	are	many	more	functionalities,
check	?!

R2	also	has	a	minimap	view	which	is	incredibly	useful	for	getting	an	overall	look	at	a
function:

IOLI	0x01

183

IOLI	0x01

184

r2	tip:	With	command	V	you	can	enter	the	so-called	visual	mode,	which	has	several
views.	You	can	switch	between	them	using	p	and	P.	The	graph	view	can	be	displayed
by	hitting	V	in	visual	mode	(or	using	VV	at	the	prompt).

Hitting	p	in	graph	view	will	bring	up	the	minimap.	It	displays	the	basic	blocks	and	the
connections	between	them	in	the	current	function,	and	it	also	shows	the	disassembly	of
the	currently	selected	block	(marked	with	@@@@@	on	the	minimap).	You	can	select
the	next	or	the	previous	block	using	the	**	and	the	**	keys	respectively.	You	can	also
select	the	true	or	the	false	branches	using	the	t	and	the	f	keys.

It	is	possible	to	bring	up	the	prompt	in	visual	mode	using	the	:	key,	and	you	can	use	o	to
seek.

Lets	read	main	node-by-node!	The	first	block	looks	like	this:

We	can	see	that	the	program	reads	a	word	(2	bytes)	into	the	local	variable	named
local_10_6,	and	than	compares	it	to	0xbb8.	Thats	3000	in	decimal,	btw:

[0x00400c63]>	?	0xbb8

3000	0xbb8	05670	2.9K	0000:0bb8	3000	10111000	3000.0	0.000000f	0.000000

r2	tip:	yep,	?	will	evaluate	expressions,	and	print	the	result	in	various	formats.

If	the	value	is	greater	than	3000,	then	it	will	be	forced	to	be	3000:

IOLI	0x01

185

There	are	a	few	things	happening	in	the	next	block:

First,	the	"Size	of	data:	"	message	we	saw	when	we	run	the	program	is	printed.	So	now	we
know	that	the	local	variable	local_10_6	is	the	size	of	the	input	data	-	so	lets	name	it
accordingly	(remember,	you	can	open	the	r2	shell	from	visual	mode	using	the	:	key!):

:>	afvn	local_10_6	input_size

r2	tip:	The	af	command	family	is	used	to	analyze	functions.	This	includes	manipulating
arguments	and	local	variables	too,	which	is	accessible	via	the	afv	commands.	You	can
list	function	arguments	(afa),	local	variables	(afv),	or	you	can	even	rename	them	(afan,
afvn).	Of	course	there	are	lots	of	other	features	too	-	as	usual:	use	the	"?",	Luke!

IOLI	0x01

186

After	this	an	input_size	bytes	long	memory	chunk	is	allocated,	and	filled	with	data	from	the
standard	input.	The	address	of	this	memory	chunk	is	stored	in	local_10	-	time	to	use	afvn
again:

:>	afvn	local_10	input_data

We've	almost	finished	with	this	block,	there	are	only	two	things	remained.	First,	an	512
(0x200)	bytes	memory	chunk	is	zeroed	out	at	offset	0x00602120.	A	quick	glance	at	XREFS
to	this	address	reveals	that	this	memory	is	indeed	used	somewhere	in	the	application:

:>	axt	0x00602120

d	0x400cfe	mov	edi,	0x602120

d	0x400d22	mov	edi,	0x602120

d	0x400dde	mov	edi,	0x602120

d	0x400a51	mov	qword	[rbp	-	8],	0x602120

Since	it	probably	will	be	important	later	on,	we	should	label	it:

:>	f	sym.memory	0x200	0x602120

r2	tip:	Flags	can	be	managed	using	the	f	command	family.	We've	just	added	the	flag
sym.memory	to	a	0x200	bytes	long	memory	area	at	0x602120.	It	is	also	possible	to
remove	(f-name),	rename	(fr	[old]	[new]),	add	comment	(fC	[name]	[cmt])	or	even	color
(fc	[name]	[color])	flags.

While	we	are	here,	we	should	also	declare	that	memory	chunk	as	data,	so	it	will	show	up	as
a	hexdump	in	disassembly	view:

:>	Cd	0x200	@	sym.memory

r2	tip:	The	command	family	C	is	used	to	manage	metadata.	You	can	set	(CC)	or	edit
(CC)	comments,	declare	memory	areas	as	data	(Cd),	strings	(Cs),	etc.	These
commands	can	also	be	issued	via	a	menu	in	visual	mode	invoked	by	pressing	d.

The	only	remaining	thing	in	this	block	is	a	function	call	to	0x400a45	with	the	input	data	as	an
argument.	The	function's	return	value	is	compared	to	"*",	and	a	conditional	jump	is	executed
depending	on	the	result.

Earlier	I	told	you	that	this	crackme	is	probably	based	on	a	virtual	machine.	Well,	with	that
information	in	mind,	one	can	guess	that	this	function	will	be	the	VM's	main	loop,	and	the
input	data	is	the	instructions	the	VM	will	execute.	Based	on	this	hunch,	I've	named	this

IOLI	0x01

187

function	vmloop,	and	renamed	input_data	to	bytecode	and	input_size	to	bytecode_length.
This	is	not	really	necessary	in	a	small	project	like	this,	but	it's	a	good	practice	to	name	stuff
according	to	their	purpose	(just	like	when	you	are	writing	programs).

:>	af	vmloop	0x400a45

:>	afvn	input_size	bytecode_length

:>	afvn	input_data	bytecode

r2	tip:	The	af	command	is	used	to	analyze	a	function	with	a	given	name	at	the	given
address.	The	other	two	commands	should	be	familiar	from	earlier.

After	renaming	local	variables,	flagging	that	memory	area,	and	renaming	the	VM	loop
function	the	disassembly	looks	like	this:

So,	back	to	that	conditional	jump.	If	vmloop	returns	anything	else	than	"*",	the	program	just
exits	without	giving	us	our	flag.	Obviously	we	don't	want	that,	so	we	follow	the	false	branch.

IOLI	0x01

188

Now	we	see	that	a	string	in	that	512	bytes	memory	area	(sym.memory)	gets	compared	to
"Such	VM!	MuCH	reV3rse!".	If	they	are	not	equal,	the	program	prints	the	bytecode,	and
exits:

OK,	so	now	we	know	that	we	have	to	supply	a	bytecode	that	will	generate	that	string	when
executed.	As	we	can	see	on	the	minimap,	there	are	still	a	few	more	branches	ahead,	which
probably	means	more	conditions	to	meet.	Lets	investigate	them	before	we	delve	into
vmloop!

If	you	take	a	look	at	the	minimap	of	the	whole	function,	you	can	probably	recognize	that
there	is	some	kind	of	loop	starting	at	block	[0d34],	and	it	involves	the	following	nodes:

[0d34]
[0d65]
[0d3d]
[0d61]

Here	are	the	assembly	listings	for	those	blocks.	The	first	one	puts	0	into	local	variable
local_10_4:

And	this	one	compares	local_10_4	to	8,	and	executing	a	conditional	jump	based	on	the
result:

IOLI	0x01

189

It's	pretty	obvious	that	local_10_4	is	the	loop	counter,	so	lets	name	it	accordingly:

:>	afvn	local_10_4	i

Next	block	is	the	actual	loop	body:

The	memory	area	at	0x6020e0	is	treated	as	an	array	of	dwords	(4	byte	values),	and
checked	if	the	ith	value	of	it	is	zero.	If	it	is	not,	the	loop	simply	continues:

IOLI	0x01

190

If	the	value	is	zero,	the	loop	breaks	and	this	block	is	executed	before	exiting:

It	prints	the	following	message:	Use	everything!"	As	we've	established	earlier,	we	are	dealing
with	a	virtual	machine.	In	that	context,	this	message	probably	means	that	we	have	to	use
every	available	instructions.	Whether	we	executed	an	instruction	or	not	is	stored	at
0x6020e0	-	so	lets	flag	that	memory	area:

:>	f	sym.instr_dirty	4*9	0x6020e0

Assuming	we	don't	break	out	and	the	loop	completes,	we	are	moving	on	to	some	more
checks:

This	piece	of	code	may	look	a	bit	strange	if	you	are	not	familiar	with	x86_64	specific	stuff.	In
particular,	we	are	talking	about	RIP-relative	addressing,	where	offsets	are	described	as
displacements	from	the	current	instruction	pointer,	which	makes	implementing	PIE	easier.
Anyways,	r2	is	nice	enough	to	display	the	actual	address	(0x602104).	Got	the	address,	flag
it!

:>	f	sym.good_if_ne_zero	4	0x602104

IOLI	0x01

191

Keep	in	mind	though,	that	if	RIP-relative	addressing	is	used,	flags	won't	appear	directly	in
the	disassembly,	but	r2	displays	them	as	comments:

If	sym.good_if_ne_zero	is	zero,	we	get	a	message	("Your	getting	closer!"),	and	then	the
program	exits.	If	it	is	non-zero,	we	move	to	the	last	check:

Here	the	program	compares	a	dword	at	0x6020f0	(again,	RIP-relative	addressing)	to	9.	If	its
greater	than	9,	we	get	the	same	"Your	getting	closer!"	message,	but	if	it's	lesser,	or	equal	to
9,	we	finally	reach	our	destination,	and	get	the	flag:

IOLI	0x01

192

As	usual,	we	should	flag	0x6020f0:

:>	f	sym.good_if_le_9	4	0x6020f0

Well,	it	seems	that	we	have	fully	reversed	the	main	function.	To	summarize	it:	the	program
reads	a	bytecode	from	the	standard	input,	and	feeds	it	to	a	virtual	machine.	After	VM
execution,	the	program's	state	have	to	satisfy	these	conditions	in	order	to	reach	the	goodboy
code:

vmloop's	return	value	has	to	be	"*"
sym.memory	has	to	contain	the	string	"Such	VM!	MuCH	reV3rse!"
all	9	elements	of	sym.instr_dirty	array	should	not	be	zero	(probably	means	that	all
instructions	had	to	be	used	at	least	once)
sym.good_if_ne_zero	should	not	be	zero
sym.good_if_le_9	has	to	be	lesser	or	equal	to	9

This	concludes	our	analysis	of	the	main	function,	we	can	now	move	on	to	the	VM	itself.

IOLI	0x01

193

.vmloop

[offset]>	fcn.vmloop

Well,	that	seems	disappointingly	short,	but	no	worries,	we	have	plenty	to	reverse	yet.	The
thing	is	that	this	function	uses	a	jump	table	at	0x00400a74,

and	r2	can't	yet	recognize	jump	tables	(Issue	3201),	so	the	analysis	of	this	function	is	a	bit
incomplete.	This	means	that	we	can't	really	use	the	graph	view	now,	so	either	we	just	use
visual	mode,	or	fix	those	basic	blocks.	The	entire	function	is	just	542	bytes	long,	so	we
certainly	could	reverse	it	without	the	aid	of	the	graph	mode,	but	since	this	writeup	aims	to
include	as	much	r2	wisdom	as	possible,	I'm	going	to	show	you	how	to	define	basic	blocks.

But	first,	lets	analyze	what	we	already	have!	First,	rdi	is	put	into	local_3.	Since	the
application	is	a	64bit	Linux	executable,	we	know	that	rdi	is	the	first	function	argument	(as
you	may	have	recognized,	the	automatic	analysis	of	arguments	and	local	variables	was	not

IOLI	0x01

194

https://github.com/radare/radare2/issues/3201

entirely	correct),	and	we	also	know	that	vmloop's	first	argument	is	the	bytecode.	So	lets
rename	local_3:

:>	afvn	local_3	bytecode

Next,	sym.memory	is	put	into	another	local	variable	at	rbp-8	that	r2	did	not	recognize.	So
let's	define	it!

:>	afv	8	memory	qword

r2	tip:	The	afv	[idx]	[name]	[type]	command	is	used	to	define	local	variable	at	[frame
pointer	-	idx]	with	the	name	[name]	and	type	[type].	You	can	also	remove	local	variables
using	the	afv-	[idx]	command.

In	the	next	block,	the	program	checks	one	byte	of	bytecode,	and	if	it	is	0,	the	function	returns
with	1.

If	that	byte	is	not	zero,	the	program	subtracts	0x41	from	it,	and	compares	the	result	to	0x17.
If	it	is	above	0x17,	we	get	the	dreaded	"Wrong!"	message,	and	the	function	returns	with	0.
This	basically	means	that	valid	bytecodes	are	ASCII	characters	in	the	range	of	"A"	(0x41)
through	"X"	(0x41	+	0x17).	If	the	bytecode	is	valid,	we	arrive	at	the	code	piece	that	uses	the
jump	table:

The	jump	table's	base	is	at	0x400ec0,	so	lets	define	that	memory	area	as	a	series	of
qwords:

IOLI	0x01

195

[0x00400a74]>	s	0x00400ec0

[0x00400ec0]>	Cd	8	@@=`?s	$$	$$+8*0x17	8`

r2	tip:	Except	for	the	?s,	all	parts	of	this	command	should	be	familiar	now,	but	lets
recap	it!	Cd	defines	a	memory	area	as	data,	and	8	is	the	size	of	that	memory	area.	@@
is	an	iterator	that	make	the	preceding	command	run	for	every	element	that	@@	holds.
In	this	example	it	holds	a	series	generated	using	the	?s	command.	?s	simply	generates
a	series	from	the	current	seek	($$)	to	current	seek	+	80x17	($$+80x17)	with	a	step	of	8.

This	is	how	the	disassembly	looks	like	after	we	add	this	metadata:

[0x00400ec0]>	pd	0x18

												;	DATA	XREF	from	0x00400a76	(unk)

												0x00400ec0	.qword	0x0000000000400a80

												0x00400ec8	.qword	0x0000000000400c04

												0x00400ed0	.qword	0x0000000000400b6d

												0x00400ed8	.qword	0x0000000000400b17

												0x00400ee0	.qword	0x0000000000400c04

												0x00400ee8	.qword	0x0000000000400c04

												0x00400ef0	.qword	0x0000000000400c04

												0x00400ef8	.qword	0x0000000000400c04

												0x00400f00	.qword	0x0000000000400aec

												0x00400f08	.qword	0x0000000000400bc1

												0x00400f10	.qword	0x0000000000400c04

												0x00400f18	.qword	0x0000000000400c04

												0x00400f20	.qword	0x0000000000400c04

												0x00400f28	.qword	0x0000000000400c04

												0x00400f30	.qword	0x0000000000400c04

												0x00400f38	.qword	0x0000000000400b42

												0x00400f40	.qword	0x0000000000400c04

												0x00400f48	.qword	0x0000000000400be5

												0x00400f50	.qword	0x0000000000400ab6

												0x00400f58	.qword	0x0000000000400c04

												0x00400f60	.qword	0x0000000000400c04

												0x00400f68	.qword	0x0000000000400c04

												0x00400f70	.qword	0x0000000000400c04

												0x00400f78	.qword	0x0000000000400b99

As	we	can	see,	the	address	0x400c04	is	used	a	lot,	and	besides	that	there	are	9	different
addresses.	Lets	see	that	0x400c04	first!

IOLI	0x01

196

We	get	the	message	"Wrong!",	and	the	function	just	returns	0.	This	means	that	those	are	not
valid	instructions	(they	are	valid	bytecode	though,	they	can	be	e.g.	parameters!)	We	should
flag	0x400c04	accordingly:

[0x00400ec0]>	f	not_instr	@	0x0000000000400c04

As	for	the	other	offsets,	they	all	seem	to	be	doing	something	meaningful,	so	we	can	assume
they	belong	to	valid	instructions.	I'm	going	to	flag	them	using	the	instructions'	ASCII	values:

[0x00400ec0]>	f	instr_A	@	0x0000000000400a80

[0x00400ec0]>	f	instr_C	@	0x0000000000400b6d

[0x00400ec0]>	f	instr_D	@	0x0000000000400b17

[0x00400ec0]>	f	instr_I	@	0x0000000000400aec

[0x00400ec0]>	f	instr_J	@	0x0000000000400bc1

[0x00400ec0]>	f	instr_P	@	0x0000000000400b42

[0x00400ec0]>	f	instr_R	@	0x0000000000400be5

[0x00400ec0]>	f	instr_S	@	0x0000000000400ab6

[0x00400ec0]>	f	instr_X	@	0x0000000000400b99

Ok,	so	these	offsets	were	not	on	the	graph,	so	it	is	time	to	define	basic	blocks	for	them!

r2	tip:	You	can	define	basic	blocks	using	the	afb+	command.	You	have	to	supply	what
function	the	block	belongs	to,	where	does	it	start,	and	what	is	its	size.	If	the	block	ends
in	a	jump,	you	have	to	specify	where	does	it	jump	too.	If	the	jump	is	a	conditional	jump,
the	false	branch's	destination	address	should	be	specified	too.

We	can	get	the	start	and	end	addresses	of	these	basic	blocks	from	the	full	disasm	of
vmloop.

IOLI	0x01

197

IOLI	0x01

198

As	I've	mentioned	previously,	the	function	itself	is	pretty	short,	and	easy	to	read,	especially
with	our	annotations.	But	a	promise	is	a	promise,	so	here	is	how	we	can	create	the	missing
bacic	blocks	for	the	instructions:

[0x00400ec0]>	afb+	0x00400a45	0x00400a80	0x00400ab6-0x00400a80	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400ab6	0x00400aec-0x00400ab6	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400aec	0x00400b17-0x00400aec	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400b17	0x00400b42-0x00400b17	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400b42	0x00400b6d-0x00400b42	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400b6d	0x00400b99-0x00400b6d	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400b99	0x00400bc1-0x00400b99	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400bc1	0x00400be5-0x00400bc1	0x400c15

[0x00400ec0]>	afb+	0x00400a45	0x00400be5	0x00400c04-0x00400be5	0x400c15

It	is	also	apparent	from	the	disassembly	that	besides	the	instructions	there	are	three	more
basic	blocks.	Lets	create	them	too!

[0x00400ec0]>	afb+	0x00400a45	0x00400c15	0x00400c2d-0x00400c15	0x400c3c	0x00400c2d

[0x00400ec0]>	afb+	0x00400a45	0x00400c2d	0x00400c3c-0x00400c2d	0x400c4d	0x00400c3c

[0x00400ec0]>	afb+	0x00400a45	0x00400c3c	0x00400c4d-0x00400c3c	0x400c61

Note	that	the	basic	blocks	starting	at	0x00400c15	and	0x00400c2d	ending	in	a	conditional
jump,	so	we	had	to	set	the	false	branch's	destination	too!

And	here	is	the	graph	in	its	full	glory	after	a	bit	of	manual	restructuring:

IOLI	0x01

199

I	think	it	worth	it,	don't	you?	:)	(Well,	the	restructuring	did	not	really	worth	it,	because	it	is
apparently	not	stored	when	you	save	the	project.)

r2	tip:	You	can	move	the	selected	node	around	in	graph	view	using	the	HJKL	keys.

BTW,	here	is	how	IDA's	graph	of	this	same	function	looks	like	for	comparison:

IOLI	0x01

200

As	we	browse	through	the	disassembly	of	the	instr_LETTER	basic	blocks,	we	should	realize
a	few	things.	The	first:	all	of	the	instructions	starts	with	a	sequence	like	these:

It	became	clear	now	that	the	9	dwords	at	sym.instr_dirty	are	not	simply	indicators	that	an
instruction	got	executed,	but	they	are	used	to	count	how	many	times	an	instruction	got
called.	Also	I	should	have	realized	earlier	that	sym.good_if_le_9	(0x6020f0)	is	part	of	this	9
dword	array,	but	yeah,	well,	I	didn't,	I	have	to	live	with	it...	Anyways,	what	the	condition
"sym.good_if_le_9	have	to	be	lesser	or	equal	9"	really	means	is	that	instr_P	can	not	be
executed	more	than	9	times:

Another	similarity	of	the	instructions	is	that	7	of	them	calls	a	function	with	either	one	or	two
parameters,	where	the	parameters	are	the	next,	or	the	next	two	bytecodes.	One	parameter
example:

IOLI	0x01

201

And	a	two	parameters	example:

We	should	also	realize	that	these	blocks	put	the	number	of	bytes	they	eat	up	of	the	bytecode
(1	byte	instruction	+	1	or	2	bytes	arguments	=	2	or	3)	into	a	local	variable	at	0xc.	r2	did	not
recognize	this	local	var,	so	lets	do	it	manually!

:>	afv	0xc	instr_ptr_step	dword

If	we	look	at	instr_J	we	can	see	that	this	is	an	exception	to	the	above	rule,	since	it	puts	the
return	value	of	the	called	function	into	instr_ptr_step	instead	of	a	constant	2	or	3:

And	speaking	of	exceptions,	here	are	the	two	instructions	that	do	not	call	functions:

IOLI	0x01

202

This	one	simply	puts	the	next	bytecode	(the	first	the	argument)	into	eax,	and	jumps	to	the
end	of	vmloop.	So	this	is	the	VM's	ret	instruction,	and	we	know	that	vmloop	has	to	return	"*",
so	"R*"	should	be	the	last	two	bytes	of	our	bytecode.

The	next	one	that	does	not	call	a	function:

This	is	a	one	argument	instruction,	and	it	puts	its	argument	to	0x6020c0.	Flag	that	address!

:>	f	sym.written_by_instr_C	4	@	0x6020c0

Oh,	and	by	the	way,	I	do	have	a	hunch	that	instr_C	also	had	a	function	call	in	the	original
code,	but	it	got	inlined	by	the	compiler.	Anyways,	so	far	we	have	these	two	instructions:

instr_R(a1):	returns	with	a1
instr_C(a1):	writes	a1	to	sym.written_by_instr_C

And	we	also	know	that	these	accept	one	argument,

instr_I
instr_D
instr_P
instr_X
instr_J

and	these	accept	two:

instr_A
instr_S

What	remains	is	the	reversing	of	the	seven	functions	that	are	called	by	the	instructions,	and
finally	the	construction	of	a	valid	bytecode	that	gives	us	the	flag.

instr_A

The	function	this	instruction	calls	is	at	offset	0x40080d,	so	lets	seek	there!

[offset]>	0x40080d

IOLI	0x01

203

r2	tip:	In	visual	mode	you	can	just	hit	\	when	the	current	line	is	a	jump	or	a	call,	and	r2
will	seek	to	the	destination	address.

If	we	seek	to	that	address	from	the	graph	mode,	we	are	presented	with	a	message	that	says
"Not	in	a	function.	Type	'df'	to	define	it	here.	This	is	because	the	function	is	called	from	a
basic	block	r2	did	not	recognize,	so	r2	could	not	find	the	function	either.	Lets	obey,	and	type
df!	A	function	is	indeed	created,	but	we	want	some	meaningful	name	for	it.	So	press	dr	while
still	in	visual	mode,	and	name	this	function	instr_A!

r2	tip:	You	should	realize	that	these	commands	are	all	part	of	the	same	menu	system	in
visual	mode	I	was	talking	about	when	we	first	used	Cd	to	declare	sym.memory	as	data.

Ok,	now	we	have	our	shiny	new	fcn.instr_A,	lets	reverse	it!	We	can	see	from	the	shape	of
the	minimap	that	probably	there	is	some	kind	cascading	if-then-elif,	or	a	switch-case
statement	involved	in	this	function.	This	is	one	of	the	reasons	the	minimap	is	so	useful:	you
can	recognize	some	patterns	at	a	glance,	which	can	help	you	in	your	analysis	(remember
the	easily	recognizable	for	loop	from	a	few	paragraphs	before?)	So,	the	minimap	is	cool	and
useful,	but	I've	just	realized	that	I	did	not	yet	show	you	the	full	graph	mode,	so	I'm	going	to
do	this	using	full	graph.	The	first	basic	blocks:

IOLI	0x01

204

The	two	function	arguments	(rdi	and	rsi)	are	stored	in	local	variables,	and	the	first	is
compared	to	0.	If	it	is,	the	function	returns	(you	can	see	it	on	the	minimap),	otherwise	the
same	check	is	executed	on	the	second	argument.	The	function	returns	from	here	too,	if	the
argument	is	zero.	Although	this	function	is	really	tiny,	I	am	going	to	stick	with	my
methodology,	and	rename	the	local	vars:

:>	afvn	local_1	arg1

:>	afvn	local_2	arg2

And	we	have	arrived	to	the	predicted	switch-case	statement,	and	we	can	see	that	arg1's
value	is	checked	against	"M",	"P",	and	"C".

IOLI	0x01

205

This	is	the	"M"	branch:

It	basically	loads	an	address	from	offset	0x602088	and	adds	arg2	to	the	byte	at	that
address.	As	r2	kindly	shows	us	in	a	comment,	0x602088	initially	holds	the	address	of
sym.memory,	the	area	where	we	have	to	construct	the	"Such	VM!	MuCH	reV3rse!"	string.	It
is	safe	to	assume	that	somehow	we	will	be	able	to	modify	the	value	stored	at	0x602088,	so
this	"M"	branch	will	be	able	to	modify	bytes	other	than	the	first.	Based	on	this	assumption,	I'll
flag	0x602088	as	sym.current_memory_ptr:

:>	f	sym.current_memory_ptr	8	@	0x602088

IOLI	0x01

206

Moving	on	to	the	"P"	branch:

Yes,	this	is	the	piece	of	code	that	allows	us	to	modify	sym.current_memory_ptr:	it	adds	arg2
to	it.

Finally,	the	"C"	branch:

Well,	it	turned	out	that	instr_C	is	not	the	only	instruction	that	modifies
sym.written_by_instr_C:	this	piece	of	code	adds	arg2	to	it.

And	that	was	instr_A,	lets	summarize	it!	Depending	on	the	first	argument,	this	instruction
does	the	following:

arg1	==	"M":	adds	arg2	to	the	byte	at	sym.current_memory_ptr.
arg1	==	"P":	steps	sym.current_memory_ptr	by	arg2	bytes.
arg1	==	"C":	adds	arg2	to	the	value	at	sym.written_by_instr_C.

instr_S

This	function	is	not	recognized	either,	so	we	have	to	manually	define	it	like	we	did	with
instr_A.	After	we	do,	and	take	a	look	at	the	minimap,	scroll	through	the	basic	blocks,	it	is
pretty	obvious	that	these	two	functions	are	very-very	similar.	We	can	use	radiff2	to	see	the
difference.

r2	tip:	radiff2	is	used	to	compare	binary	files.	There's	a	few	options	we	can	control	the
type	of	binary	diffing	the	tool	does,	and	to	what	kind	of	output	format	we	want.	One	of
the	cool	features	is	that	it	can	generate	DarumGrim-style	bindiff	graphs	using	the	-g
option.

IOLI	0x01

207

http://www.darungrim.org/

Since	now	we	want	to	diff	two	functions	from	the	same	binary,	we	specify	the	offsets	with	-g,
and	use	reverse4	for	both	binaries.	Also,	we	create	the	graphs	for	comparing	instr_A	to
instr_S	and	for	comparing	instr_S	to	instr_A.

[0x00	~]$	radiff2	-g	0x40080d,0x40089f		reverse4	reverse4	|	xdot	-

[0x00	~]$	radiff2	-g	0x40089f,0x40080d		reverse4	reverse4	|	xdot	-

IOLI	0x01

208

A	sad	truth	reveals	itself	after	a	quick	glance	at	these	graphs:	radiff2	is	a	liar!	In	theory,	grey
boxes	should	be	identical,	yellow	ones	should	differ	only	at	some	offsets,	and	red	ones
should	differ	seriously.	Well	this	is	obviously	not	the	case	here	-	e.g.	the	larger	grey	boxes
are	clearly	not	identical.	This	is	something	I'm	definitely	going	to	take	a	deeper	look	at	after
I've	finished	this	writeup.

Anyways,	after	we	get	over	the	shock	of	being	lied	to,	we	can	easily	recognize	that	instr_S	is
basically	a	reverse-instr_A:	where	the	latter	does	addition,	the	former	does	subtraction.	To
summarize	this:

arg1	==	"M":	subtracts	arg2	from	the	byte	at	sym.current_memory_ptr.
arg1	==	"P":	steps	sym.current_memory_ptr	backwards	by	arg2	bytes.
arg1	==	"C":	subtracts	arg2	from	the	value	at	sym.written_by_instr_C.

instr_I

IOLI	0x01

209

This	one	is	simple,	it	just	calls	instr_A(arg1,	1).	As	you	may	have	noticed	the	function	call
looks	like		call	fcn.0040080d		instead	of		call	fcn.instr_A	.	This	is	because	when	you	save
and	open	a	project,	function	names	get	lost	-	another	thing	to	examine	and	patch	in	r2!

instr_D

Again,	simple:	it	calls	instr_S(arg1,	1).

instr_P

It's	local	var	rename	time	again!

:>	afvn	local_0_1	const_M

:>	afvn	local_0_2	const_P

:>	afvn	local_3	arg1

IOLI	0x01

210

This	function	is	pretty	straightforward	also,	but	there	is	one	oddity:	const_M	is	never	used.	I
don't	know	why	it	is	there	-	maybe	it	is	supposed	to	be	some	kind	of	distraction?	Anyways,
this	function	simply	writes	arg1	to	sym.current_memory_ptr,	and	than	calls	instr_I("P").	This
basically	means	that	instr_P	is	used	to	write	one	byte,	and	put	the	pointer	to	the	next	byte.
So	far	this	would	seem	the	ideal	instruction	to	construct	most	of	the	"Such	VM!	MuCH
reV3rse!"	string,	but	remember,	this	is	also	the	one	that	can	be	used	only	9	times!

instr_X

Another	simple	one,	rename	local	vars	anyways!

:>	afvn	local_1	arg1

This	function	XORs	the	value	at	sym.current_memory_ptr	with	arg1.

instr_J

IOLI	0x01

211

This	one	is	not	as	simple	as	the	previous	ones,	but	it's	not	that	complicated	either.	Since	I'm
obviously	obsessed	with	variable	renaming:

:>	afvn	local_3	arg1

:>	afvn	local_0_4	arg1_and_0x3f

After	the	result	of	arg1	&	0x3f	is	put	into	a	local	variable,	arg1	&	0x40	is	checked	against	0.	If
it	isn't	zero,	arg1_and_0x3f	is	negated:

The	next	branching:	if	arg1	>=	0,	then	the	function	returns	arg1_and_0x3f,

IOLI	0x01

212

else	the	function	branches	again,	based	on	the	value	of	sym.written_by_instr_C:

If	it	is	zero,	the	function	returns	2,

else	it	is	checked	if	arg1_and_0x3f	is	a	negative	number,

and	if	it	is,	sym.good_if_ne_zero	is	incremented	by	1:

IOLI	0x01

213

After	all	this,	the	function	returns	with	arg1_and_0x3f:

IOLI	0x01

214

.instructionset
We've	now	reversed	all	the	VM	instructions,	and	have	a	full	understanding	about	how	it
works.	Here	is	the	VM's	instruction	set:

Instruction 1st	arg 2nd	arg What	does	it	do?

"A" "M" arg2 *sym.current_memory_ptr	+=	arg2

"P" arg2 sym.current_memory_ptr	+=	arg2

"C" arg2 sym.written_by_instr_C	+=	arg2

"S" "M" arg2 *sym.current_memory_ptr	-=	arg2

"P" arg2 sym.current_memory_ptr	-=	arg2

"C" arg2 sym.written_by_instr_C	-=	arg2

"I" arg1 n/a instr_A(arg1,	1)

"D" arg1 n/a instr_S(arg1,	1)

"P" arg1 n/a *sym.current_memory_ptr	=	arg1;	instr_I("P")

"X" arg1 n/a *sym.current_memory_ptr	^=	arg1

"J" arg1 n/a

arg1_and_0x3f	=	arg1	&	0x3f;
if	(arg1	&	0x40	!=	0)
		arg1_and_0x3f	*=	-1
if	(arg1	>=	0)	return	arg1_and_0x3f;
else	if	(*sym.written_by_instr_C	!=	0)	{
		if	(arg1_and_0x3f	<	0)
				++*sym.good_if_ne_zero;
		return	arg1_and_0x3f;
}	else	return	2;

"C" arg1 n/a *sym.written_by_instr_C	=	arg1

"R" arg1 n/a return(arg1)

IOLI	0x01

215

.bytecode
Well,	we	did	the	reverse	engineering	part,	now	we	have	to	write	a	program	for	the	VM	with
the	instruction	set	described	in	the	previous	paragraph.	Here	is	the	program's	functional
specification:

the	program	must	return	"*"
sym.memory	has	to	contain	the	string	"Such	VM!	MuCH	reV3rse!"	after	execution
all	9	instructions	have	to	be	used	at	least	once
sym.good_if_ne_zero	should	not	be	zero
instr_P	is	not	allowed	to	be	used	more	than	9	times

Since	this	document	is	about	reversing,	I'll	leave	the	programming	part	to	the	fellow	reader	:)
But	I'm	not	going	to	leave	you	empty-handed,	I'll	give	you	one	advice:	Except	for	"J",	all	of
the	instructions	are	simple,	easy	to	use,	and	it	should	not	be	a	problem	to	construct	the
"Such	VM!	MuCH	reV3rse!"	using	them.	"J"	however	is	a	bit	complicated	compared	to	the
others.	One	should	realize	that	its	sole	purpose	is	to	make	sym.good_if_ne_zero	bigger	than
zero,	which	is	a	requirement	to	access	the	flag.	In	order	to	increment	sym.good_if_ne_zero,
three	conditions	should	be	met:

arg1	should	be	a	negative	number,	otherwise	we	would	return	early
sym.written_by_instr_C	should	not	be	0	when	"J"	is	called.	This	means	that	"C",	"AC",
or	"SC"	instructions	should	be	used	before	calling	"J".
arg1_and_0x3f	should	be	negative	when	checked.	Since	0x3f's	sign	bit	is	zero,	no
matter	what	arg1	is,	the	result	of	arg1	&	0x3f	will	always	be	non-negative.	But
remember	that	"J"	negates	arg1_and_0x3f	if	arg1	&	0x40	is	not	zero.	This	basically
means	that	arg1's	6th	bit	should	be	1	(0x40	=	01000000b).	Also,	because
arg1_and_0x3f	can't	be	0	either,	at	least	one	of	arg1's	0th,	1st,	2nd,	3rd,	4th	or	5th	bits
should	be	1	(0x3f	=	00111111b).

I	think	this	is	enough	information,	you	can	go	now	and	write	that	program.	Or,	you	could	just
reverse	engineer	the	quick'n'dirty	one	I've	used	during	the	CTF:

\x90\x00PSAMuAP\x01AMcAP\x01AMhAP\x01AM	AP\x01AMVAP\x01AMMAP\x01AM!AP\x01AM	AP\x01AMMA

P\x01AMuAP\x01AMCAP\x01AMHAP\x01AM	AP\x01AMrAP\x01AMeAP\x01AMVAP\x01AM3AP\x01AMrAP\x01

AMsAP\x01AMeIPAM!X\x00CAJ\xc1SC\x00DCR*

Keep	in	mind	though,	that	it	was	written	on-the-fly,	parallel	to	the	reversing	phase	-	for
example	there	are	parts	that	was	written	without	the	knowledge	of	all	possible	instructions.
This	means	that	the	code	is	ugly	and	unefficient.

IOLI	0x01

216

IOLI	0x01

217

.outro
Well,	what	can	I	say?	Such	VM,	much	reverse!	:)

What	started	out	as	a	simple	writeup	for	a	simple	crackme,	became	a	rather	lengthy
writeup/r2	tutorial,	so	kudos	if	you've	read	through	it.	I	hope	you	enjoyed	it	(I	know	I	did),	and
maybe	even	learnt	something	from	it.	I've	surely	learnt	a	lot	about	r2	during	the	process,	and
I've	even	contributed	some	small	patches,	and	got	a	few	ideas	of	more	possible
improvements.

IOLI	0x01

218

Radare2	Reference	Card

Survival	Guide

Command Description

aa Auto	analyze

Content	Cell Content	Cell

pdf@fcn(Tab) Disassemble	function

f	fcn(Tab) List	functions

f	str(Tab) List	strings

fr	[flagname]	[newname] Rename	flag

psz	[offset] Print	string

arf	[flag] Find	cross	reference	for	a	flag

Flagspaces

Command Description

fs Display	flagspaces

fs	* Select	all	flagspaces

fs	[sections] Select	one	flagspace

Flags

Reference	Card

219

Command Description

f List	flags

fs	* Select	all	flagspaces

fs	[sections] Select	one	flagspace

fj Display	flags	in	JSON

fl Show	flag	length

fx Show	hexdump	of	flag

fC	[name]	[comment] Set	flag	comment

Information

Command Description

ii Information	on	imports

iI Info	on	binary

ie Display	entrypoint

iS Display	sections

ir Display	relocations

Print	string

Command Description

psz	[offset] Print	zero	terminated	string

psb	[offset] Print	strings	in	current	block

psx	[offset] Show	string	with	scaped	chars

psp	[offset] Print	pascal	string

psw	[offset] Print	wide	string

Visual	mode

Command Description

V Enter	visual	mode

p/P Rotate	modes	(hex,	disasm,	debug,	words,	buf)

Reference	Card

220

c Toggle	(c)ursor

q Back	to	Radare	shell

hjkl Move	around	(or	HJKL)	(left-down-up-right)

Enter Follow	address	of	jump/call

sS Step/step	over

o Go/seek	to	given	offset

. Seek	to	program	counter

/ In	cursor	mode,	search	in	current	block

:cmd Run	radare	command

;[-]cmt Add/remove	comment

/*+-[] Change	block	size,	[]	=	resize	hex.cols

>||< Seek	aligned	to	block	size

i/a/A (i)nsert	hex,	(a)ssemble	code,	visual	(A)ssembler

b/B Toggle	breakpoint	/	automatic	block	size

d[f?] Define	function,	data,	code,	..

D Enter	visual	diff	mode	(set	diff.from/to)

e Edit	eval	configuration	variables

f/F Set/unset	flag

gG Go	seek	to	begin	and	end	of	file	(0-$s)

mK/’K Mark/go	to	Key	(any	key)

M Walk	the	mounted	filesystems

n/N Seek	next/prev	function/flag/hit	(scr.nkey)

o Go/seek	to	given	offset

C Toggle	(C)olors

R Randomize	color	palette	(ecr)

t Track	flags	(browse	symbols,	functions..)

T Browse	anal	info	and	comments

v Visual	code	analysis	menu

V/W (V)iew	graph	(agv?),	open	(W)ebUI

uU Undo/redo	seek

x Show	xrefs	to	seek	between	them

Reference	Card

221

yY Copy	and	paste	selection

z Toggle	zoom	mode

Searching

Command Description

/	foo\00 Search	for	string	’foo\0’

/b Search	backwards

// Repeat	last	search

/w	foo Search	for	wide	string	’f\0o\0o\0’

/wi	foo Search	for	wide	string	ignoring	case

/!	ff Search	for	first	occurrence	not	matching

/i	foo Search	for	string	’foo’	ignoring	case

/e	/E.F/i Match	regular	expression

/x	ff0.23 Search	for	hex	string

/x	ff..33 Search	for	hex	string	ignoring	some	nibbles

/x	ff43	ffd0 Search	for	hexpair	with	mask

/d	101112 Search	for	a	deltified	sequence	of	bytes

/!x	00 Inverse	hexa	search	(find	first	byte	!=	0x00)

/c	jmp	[esp] Search	for	asm	code	(see	search.asmstr)

/a	jmp	eax Assemble	opcode	and	search	its	bytes

/A Search	for	AES	expanded	keys

/r	sym.printf Analyze	opcode	reference	an	offset

/R Search	for	ROP	gadgets

/P Show	offset	of	previous	instruction

/m	magicfile Search	for	matching	magic	file

/p	patternsize Search	for	pattern	of	given	size

/z	min	max Search	for	strings	of	given	size

/v[?248]	num Look	for	a	asm.bigendian	32bit	value

Saving

Reference	Card

222

Command Description

Po	[file] Open	project

Ps	[file] Save	project

Pi	[file] Show	project	information

Usable	variables	in	expression

Command Description

$$ Here	(current	virtual	seek)

$o Here	(current	disk	io	offset)

$s File	size

$b Block	size

$w Get	word	size,	4	if	asm.bits=32,	8	if	64

$c,$r Get	width	and	height	of	terminal

$S Section	offset

$SS Section	size

$j Jump	address	(jmp	0x10,	jz	0x10	=>	0x10)

$f Jump	fail	address	(jz	0x10	=>	next	instruction)

$I Number	of	instructions	of	current	function

$F Current	function	size

$Jn Get	nth	jump	of	function

$Cn Get	nth	call	of	function

$Dn Get	nth	data	reference	in	function

$Xn Get	nth	xref	of	function

$m Opcode	memory	reference	(mov	eax,[0x10]	=>	0x10)

$l Opcode	length

$e 1	if	end	of	block,	else	0

$ev Get	value	of	eval	config	variable

$? Last	comparison	value

License

Reference	Card

223

This	chapter	is	based	on	the	Radare	2	reference	card	by	Thanat0s,	which	is	under	the	GNU
GPL.	Original	license	is	as	follows:

This	card	may	be	freely	distributed	under	the	terms	of	the	GNU

general	public	licence	—	Copyright	c		by	Thanat0s	-	v0.1	-

Reference	Card

224

	introduction
	Introduction
	History
	Overview
	Getting radare2
	Compilation and Portability
	Compilation on Windows
	Command-line Flags
	Basic Usage
	Command Format
	Expressions
	Rax2
	Basic Debugger Session
	Contributing to radare2

	Configuration
	Colors
	Common Configuration Variables

	Basic Commands
	Seeking
	Block Size
	Sections
	Mapping Files
	Print Modes
	Flags
	Write
	Zoom
	Yank/Paste
	Comparing Bytes

	Visual mode
	Visual Disassembly

	Searching bytes
	Basic Searches
	Configurating the Search
	Pattern Search
	Automation
	Backward Search
	Search in Assembly
	Searching for AES Keys

	Disassembling
	Adding Metadata
	ESIL

	Scripting
	Loops
	Macros

	Rabin2
	File Identification
	Entrypoint
	Imports
	Symbols (exports)
	Libraries
	Strings
	Program Sections
	Binary Diffing

	Rasm2
	Assemble
	Disassemble

	Ragg2
	Analysis
	Code Analysis

	Rahash2
	Rahash Tool

	Debugger
	Getting Started
	Registers
	Remoting Capabilities
	Plugins

	Crackmes
	IOLI
	IOLI 0x00
	IOLI 0x01

	Reference Card

