
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266650299

Security Analysis of MD5 Algorithm in Password Storage

Article · February 2013

DOI: 10.2991/isccca.2013.177

CITATIONS

46
READS

10,641

3 authors, including:

Mary Cindy Ah Kioon

2 PUBLICATIONS 47 CITATIONS

SEE PROFILE

Shubra Deb Das

2 PUBLICATIONS 47 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mary Cindy Ah Kioon on 17 August 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/266650299_Security_Analysis_of_MD5_Algorithm_in_Password_Storage?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/266650299_Security_Analysis_of_MD5_Algorithm_in_Password_Storage?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary-Kioon?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary-Kioon?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary-Kioon?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shubra-Das?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shubra-Das?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shubra-Das?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mary-Kioon?enrichId=rgreq-4b1d55e50e5417bc8ac0c6dbabcbe830-XXX&enrichSource=Y292ZXJQYWdlOzI2NjY1MDI5OTtBUzoyNjM0MDI1MjYzNDMxNjlAMTQzOTgxMTQ2NDMzNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Security Analysis of MD5 algorithm in Password Storage

Mary Cindy Ah Kioon, ZhaoShun Wang and Shubra Deb Das
School of Computer and Communication Engineering

University of Science and Technology (USTB), Beijing
Beijing 100083, China

email: cindyak86@gmail.com , zhswang@sohu.com and shubra_ustb@yahoo.com

Abstract— Hashing algorithms are commonly used to convert
passwords into hashes which theoretically cannot be
deciphered. This paper analyses the security risks of the
hashing algorithm MD5 in password storage and discusses
different solutions, such as salts and iterative hashing. We
propose a new approach to using MD5 in password storage by
using external information, a calculated salt and a random key
to encrypt the password before the MD5 calculation. We
suggest using key stretching to make the hash calculation
slower and using XOR cipher to make the final hash value
impossible to find in any standard rainbow table.

Keywords-component; MD5; Password Storage Security;
Data Security; Dictionary attacks; Rainbow Tables

I. INTRODUCTION

With the advent of computer technology, it became more
productive to store information in databases instead of
storing in paper documents. Web applications, needing user
authentication, typically validate the input passwords by
comparing them to the real passwords, which are commonly
stored in the company’s private databases. If the database
and hence these passwords were to become compromised,
the attackers would have unlimited access to these users’
personal. Nowadays, databases use a hash algorithm to
secure the stored passwords but there are still security
breaches. Recently in 2012, Russian hackers released a big
list of cracked passwords from the well-known social
networking sites including LinkedIn. These attacks were
found to be successful due to the use of a weak hashing
algorithm.

II. HASH FUNCTION

A hash function is a one-way encryption function that
takes a variable-size input plaintext m and generates a fixed-
size hash output. It is computationally hard to decipher the
hash and any attempt to crack it is practically infeasible. A
“secure” hash function should be able to resist pre-image
attacks and collision attacks. Due to the pigeonhole principle
and birthday paradox, there will be some inputs that will
produce the same hash result. The output length is of fixed
size 128 bits, making a total of 2128 possible output hash
values. This value, as big as it may seem, is not infinite,
hence resulting in collisions.

A. MD5 algorithm

MD5 (Message Digest Algorithm 5) was designed by
Ron Rivest in 1991. MD5 processes a variable-length
message into a fixed-length output of 128 bits. MD5 is a
popular hash function. It works on blocks of 512-bits, and
processes each block through 4 rounds, where each round in
turn processes 16 sub-blocks (each 32-bits). The 512-bit
message is divided into 16 sub-blocks before processing. If a
message block is not up to 512-bits, it is padded as shown in
Fig. 1. A detailed explanation of the algorithm can be found
at [1].

Figure 1. Length of message after padding (in bits)

III. APPLICATION OF MD5 ALGORITHM IN PASSWORD

STORAGE SECURITY

It is highly insecure to store passwords in plaintext in the
database. In order to increase the security of passwords,
MD5 algorithms can be used to hash the original passwords
and the hash values, instead of the plaintext are stored in the
database. During authentication, the input password is also
hashed by MD5 in a similar way, and the result hash value is
compared with the hash value in the database for that
particular user.

IV. SECURITY ANALYSIS OF MD5

MD5 algorithm is prone to two main types of attack:
dictionary attacks and rainbow tables.

A. Dictionary Attacks

In dictionary attacks, an attacker tries all the possible
passwords in an exhaustive list called a dictionary. The
attacker hashes each password from the dictionary and
performs a binary search on the compromised hashed
passwords. This method can be made much quicker by pre-
computing the hash values of these possible passwords and
storing them in a hash table.

B. Rainbow Tables

Rainbow tables are made up of hash chains and are more

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0706

efficient than hash tables as they optimize the storage
requirements, although the lookup is made slightly slower.
Rainbow tables differ from hash tables in that they are
created using both reduction and hash functions. Reduction
functions convert a hash value to a plaintext. The plaintext is
not the original plaintext from which the hash value was
generated, but another one. By alternating the hash function
with the reduction function, chains of alternating passwords
and hash values are formed. Only the first (chain’s start point)
and last plaintext (chain’s end point) generated are stored in
the table. To decipher a hashed password, we first process
the hashed password through reduction functions until we
find a match to a chain’s end point. We then take that chain’s
corresponding start point and regenerate the hash chain and
find the original plaintext to the hashed password. Rainbow
tables are very easily available online now. There are many
password cracking systems and websites that use rainbow
tables also, for example, OphCrack. Of course, using
rainbow tables do not guarantee a 100% success rate of
cracking password systems. However, the bigger the
character set used for creating the rainbow table and the
longer the hash chain length, the bigger will the rainbow
table be.

V. COUNTERMEASURES RESEARCH

A. Information Entropy

Password strength is usually measured in terms of
information entropy. In simple terms, the higher the
information entropy, the stronger the password and hence the
more difficult it is to crack it. A password of 6 characters
would require only 26 attempts to exhaust all possibilities in
a brute-force attack, while a password with 42 characters
would need 242 attempts. As can be seen, the longer the
password and the larger the character set from which it is
derived, the stronger the password. As best practice and
preliminary requirement, the application should insist that
the user uses a strong password during the registration
process. Strong passwords run less risk of existing in
dictionaries. Common simple passwords like “123456” have
already been banned by Microsoft Hotmail.

B. Salting

One of the most common reasons to successful password
cracking attacks like the one against LinkedIn was because
they were using unsalted hashes. This makes it much easier
for hackers to crack the system by using rainbow tables,
especially given the fact that many users use very common,
simple passwords and these similar passwords result in
similar hashes. A salt is a secondary piece of information
made of a string of characters which are appended to the
plaintext and then hashed. Salting makes passwords more
resistant to rainbow tables as the salted hashed password will
have higher information entropy and hence much less likely
to exist in pre-computed rainbow tables. Typically, a salt
should be at least 48 bits. Salting can be implemented using
the following ways:

1) Single salt for all passwords: Given that the salt is
sufficiently long and complex, a standard rainbow table,

cannot be used to decipher the salted hashes. However, two
same passwords will still produce the same hash.

2) Different random salt for each password and storing
the salt within the database itself: If we use different salts
for each password, two same passwords will have different
hashes. The attacker has to generate different rainbow tables
for each individual user, making it computationally harder
for an attacker to crack the hashes. These salts can be stored
in plaintext in the database. The purpose of the salt is not to
be secret, but to be random enough to defeat the use of
rainbow tables.

3) Use an existing column value: An existing column
value like username can be used as salt. This solution is
similar to the second solution discussed above. It defeats the
use of a standard rainbow table, but a hacker might generate
a rainbow table for a specific username, for example, “root”
or “admin”.

4) Use a variably located calculated salt: The salt
location can be prefix (salt appended in front of password),
infix (salt appended within the password) or postfix (salt
appended at the end of the password). If the salt’s location is
made random, then cracking the passwords is made harder.
For example, we can set the salt location to be equal to the
password’s length modulo 3. The salt can be calculated by
using a random character sequence (stored in the database)
and using other characters (embedded within the code). For
example, the salt can be made to be a combination of the first
two letters of username, random sequence of characters and
the last 2 letters of username.

5) Use a variably located calculated salt including
information outside the database and the application code:
The hacker now has to break into the database and the server
containing the application code. He also needs to obtain the
additional information needed to crack the password.

C. Improvement on MD5 processing

The following methods can be used to improve the MD5
processing:

1) Improved hash function: The hash computation
function is altered, for example using one of the following
functions as shown in (1), (2) and (3):

 hash = Hash (password + salt) (1)

hash = Hash (Hash (password) + salt) (2)

 hash = Hash (password + salt + key) (3)

2) Iterative hashing: The password is hashed a number
of times. MD5 is a fast hashing function, that is, it is
computationally fast to calculate. Iterative hashing makes the
calculation slower, hence computationally slower and more

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0707

difficult to crack. The number of iterations can typically be
made to be equal to 1000.

3) Key stretching: This makes a password more resistant
to pre-computation attacks by making the attack workload
bigger. Iterative hashing is used, where a weak key is fed
into the hash algorithm and the output results in a stronger
key. There are 3 key stretching methods depending on the
input used for the iterative hashing:

a) Simple Key stretching: Only the key is hashed
iteratively, as in (4). No salt is involved.

key = Hash (key) (4)

b) Password Key stretching: The password along with
the key are both used in the loop.

c) Salted Key Stretching: The key, password and salt
are used in the loop. This method is the best of the three key
stretching methods.

4) Transform the password before hashing: Before
calculating the MD5 hash for the password, the latter is
transformed using a simple cipher method.

5) Chaining method and XOR(Exclusive OR) cipher: If
iterative hashing is used, the hash output from the current
iteration is used in the input for the next iteration. We use a
simple XOR cipher to compute the final hash by “XORing”
the hash output value from all iterations. A simple XOR
cipher is typically of the form shown in (5). If the key is
made random enough, the ciphertext will be almost
impossible to crack.

 plaintext XOR key = ciphertext (5)

D. Example of an improved MD5 processing

We will now demonstrate how we can hash passwords in
databases using an improved version of MD5. There are five
main steps involved.

First, a random key string of random length is first
generated. Its character set is {0-9, a-z, A-Z}.This random
key string is used to generate the complex password and is
also stored in the database for later use during password
authentication.

Secondly, the password is transformed into a complex
password through columnar transposition cipher. Assuming
that the random key is “YDCiA” and the password is
“crazyrichard”, the password is first converted into a matrix
of 5 columns (same as length of random key) and the blank
cells are alternately filled with “*” and “@”, as shown in
Fig.2. Using columnar transposition cipher, the complex
password generated is “ya*ac*ridcrrzh@”.

Thirdly, the salt is calculated by finding the XOR value
of the random key string with the complex password, row by
row. In our example, the salt is " %i\b\"s6*\r\"".

Figure 2. Generate complex password through columnar transposition

 Fourthly, an additional random information string of 128
bits is generated for each user and stored in an external file,
e.g. in a flash drive.

Finally, the password is hashed using a formula based on
key stretching. The hashing process is similar to a cipher
block chaining method, where the output of one round is
used in the input of the other round, as shown in Fig. 3. By
calculating the XOR result of the hash value at one round
with the one at the previous round, the resulting hashed value
is made impossible to find in any standard rainbow table.

The final hashed password is then stored in the database.
The system authenticates a user by calculating the hash value
(the random key is retrieved from the database for use),
which is then compared to the stored hashed password. An
example of how the hashed passwords will appear in the
database is shown in Fig. 4.

Figure 3. Example of hashed passwords in a database using the improved

MD5

Figure 4. Example of hashed passwords in a database using the improved

MD5

The overall algorithm can be summarized in Fig. 5. The
initialization vector used here is the additional information,

finalHash = HV0 ^ HV1 ^ ……^ HVN ,

HV0 = Hash (CpxPassword, additionalInfo);
HV1 = Hash (CpxPassword, HV0, salt);
HVN= Hash (CpxPassword, HVN-1, salt);
N is the number of iterations and ^ is XOR.
HV: Hash Value and
CpxPassword: Complex Password

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0708

which is a random string of 128 bits. Each user has a
different initialization vector value.

Figure 5. Improved MD5 processing (IV: Initialization Vector)

VI. PERFORMANCE ANALYSIS

First of all, an attack using a standard rainbow table
would fail because the hashed password stored in the
database is not of hexadecimal form and hence would not
exist in any standard rainbow table. We tried a few online
MD5 decryption tools like http://www.md5decrypter.co.uk/
and downloaded software tools like Cain and Abel. But,
since all of them use rainbow tables where the MD5 hashes
are in hex form and our stored hash value is in ASCII, the
attacks would already fail from the beginning, as shown in
Fig. 6.

Also, by XORing the output hash values from each
iteration makes it almost impossible to find out the original
hash output at the first round. Generally, if we XOR the
plaintext with a key to calculate the cipher text, we can get
back the plaintext simply by using XORing the cipher text
with the key. However, if the key is random, then it is almost
impossible to get back the plaintext. In our example, the key
is totally random as we are hashing intermediate hash output
values and hence given the final hash value, it is impossible
to decipher it.

Figure 6. Invalid character in the MD5 Hash in Cain and Abel

Also, even if two users have two same passwords, the
random key used to encrypt the passwords will be different,
resulting in different complex passwords. Furthermore, the

initialization vectors and salt are different for each user. For
two users with the same passwords, the final hash value will
be completely different.

VII. CONCLUSION

Password storage security is one important aspect of data
security as most systems nowadays require an authentication
method using passwords. Hashing algorithms such as MD5
are commonly used for encrypting plaintext passwords into
strings that theoretically cannot be deciphered by hackers
due to their one-way encryption feature. However, with time,
attacks became possible through the use of dictionary tables
and rainbow tables. In this paper, we discussed different
methods to thwart these attacks: (1) the use of a strong
password to reduce the probability of it existing in a
dictionary, (2) using salts, (3) key stretching and iteration
hashing to make the MD5 computation slower, (4) chaining
method, where the output of one iteration is used in the input
of the next iteration and the use of a different initialization
vector for each password, (5) encrypting the password before
hashing and (6) XOR cipher to make the final hash value
impossible to find in any rainbow table. An implementation
of the proposed approach is carried out using C# as
programming language and Microsoft SQL Server as
database. With our proposed approach, the attacker will now
have to hack into the database, the server containing the
application code as well as the external file.

ACKNOWLEDGMENT

The work reported in this paper was supported by
the Beijing Natural Science Foundation of China (Grant
No. 4112037).

The authors would like to thank and acknowledge the
support and assistance of relatives, friends and colleagues.

REFERENCES
[1] Rivest, R. The MD5 message-digest algorithm. RFC 1321, 37 (April

1992).

[2] Zhang Shaolan, Xing Guobo, Yang Yixian, Improvement and
Security Analysis on MD5 [J]. Computer Application, 2009, vol.
29(4):947-949.

[3] Xiaoling Zheng, JiDong Jin, Research for the Application and Safety
of MD5 Algorithm in Password Authentication, 9th International
Conference on Fuzzy Systems and Knowledge Discovery, 2012.

[4] H. Mirvaziri, Kasmiran Jumari, Mahamod Ismail, Z. Mohd Hanapi, A
new Hash Function Based on Combination of Existing Digest
Algorithms , The 5th Student Conference on Research and
Development – SCOReD 2007, 11-12 December 2007, Malaysia.

[5] Md. Didarul Alam Chawdhury, and A.H.M. Ashfak Habib, Security
Enhancement of MD5 Hashed Passwords by using the Unused Bits of
TCP Header, Proceedings of 11th International Conference on
Computer and Information Technology (ICCIT 2008) 25-27
December, 2008, Khulna, Bangladesh

Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation (ISCCCA-13)

Published by Atlantis Press, Paris, France.
© the authors, 2013

0709
V i e w p u b l i c a t i o n s t a t s

https://www.researchgate.net/publication/266650299

