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www.artofproblemsolving.com

The Art of Problem Solving (AoPS) is:
> Books

For over 20 years, the classic Art of Problem Solving books have been used by students
as a resource for the American Mathematics Competitions and other national and local math
events.

Every school should have this in their math library.
- Paul Zeitz, past coach of the U.S. International Mathematical Olympiad team

The Art of Problem Solving Introduction and Intermediate texts form a complete curriculum
for outstanding math students in grades 6-12.

The new book [Introduction to Counting & Probability] is great. I have started to
use it in my classes on a regular basis. I can see the improvement in my kids over
just a short period.

- Jeff Boyd, 4-time MATHCOUNTS National Competition winning coach

Classes

v

The Art of Problem Solving offers online classes on topics such as number theory, count-
ing, geometry, algebra, precalculus, calculus, computer programming, and problem solving
at beginning, intermediate, and Olympiad levels. Over 8,000 students will participate in an
AoPS online class in 2015.

All the children were very engaged. It's the best use of technology I have ever seen.
- Mary Fay-Zenk, coach of National Champion California MATHCOUNTS teams

» Forum

As of November 2015, the Art of Problem Solving Forum has over 200,000 members who
have posted over 4,000,000 messages on our discussion board. Members can also participate
in any of our free “Math Jams.”

I'd just like to thank the coordinators of this site for taking the time to set it up. .. I
think this is a great site, and I bet just about anyone else here would say the same. ..
— AoPS Community Member

» Videos, tutorials, interactive resources, and much, much more!

Membership is FREE! Come join the Art of Problem Solving community today!
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Thanks

A large number of individuals and organizations have helped make'the:’ .ART of PR.’OB'LEM
SOLVING possible. All of the following people and groups made very significant contributions,
and we offer our deepest gratitude to them all.

Samuel Vandervelde. Sam collaborated with us in creating the Mandelbrot Competition;_he
continues producing the contest to this day. His work in developing innovative and challenging
problems astounds us. In addition to writing these tests, Sam has also contributed problems to the
U.S.A. Mathematical Olympiad and created the Stanford Math Circle. Sam is a 19?3 graduate of
Swarthmore College and earned his Ph.D. in mathematics from the University of Chicago. He was
a member of the 1989 U.S. International Mathematics Olympiad team, and was a grader for three
years at the Math Olympiad Program, a seminar that determines and prepares that team. Many
times when trying to find a proof for some theorem, we’d call on Sam and he’d give us threg or four.
We owe Sam many thanks for his contributions as a mathematician, our partner, and our friend.

MATHCOUNTS is the premier extracurricular middle school mathematics program in the
United States. MATHCOUNTS produces educational problem solving materials and conducts a
nationwide contest consisting of school, chapter, state, and national levels. Over 30,000 students
participate in the contest each year and hundreds of thousands learn from MATHCOUNTS mate-
rials. MATHCOUNTS was the starting point in mathematics for one of the authors, and is a great
entry into mathematics for seventh and eighth graders. To Barbara Xhajanka we offer an extra thank
you for her help. For more information, visit www.mathcounts.org.

The Mandelbrot Competition was started in 1990 by Sam Vandervelde and the authors. It is
a four round high school competition designed to teach students not only the common subjects of
geometry and algebra, but also subjects that don’t appear in high school classes, like number theory
and proof techniques. Each round of the Competition consists of an Individual Test and a Team
Test. The Individual Test is a short answer test while the Team Test is a series of proofs designed
to enhance participants’ knowledge of a particular subject area. There are two divisions of the
competition, one for beginners and one for more advanced problem solvers. For more information
regarding the Mandelbrot Competition, visit www.mandelbrot.org.

Dr. George Berzsenyi. We could go on for pages about Dr. Berzsenyi’s many contributions to
mathematics education through his involvement in competitions and summer programs. He has
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beeninvolved in writing the AHSME, AIME, and USAMO as well as other independent competitions.
Healso created the U.S.A. Mathematical Talent Searchand its international counterpart; participating
students in each round are given a month to prepare full solutions to five problems. These solutions
are graded by mathematicians and comments on the papers are returned to the students. The
USAMTS is an excellent way for students to learn how to write proofs. The USAMTS is now
administered by the Art of Problem Solving Foundation (www.artofproblemsolving.org), and is

funded primarily by the National Security Agency. For more information on the USAMTS, visit
WWW.Uusamts.org.

Dr. Berzsenyi was also an editor and contributor to the Mathematics and Informatics Quarterly
(M&IQ). In addition to many practice problems, M&IQ contains articles written (in English) by
people all over the world on various subjects of interest to the high school mathematician. While
entirely within the reach of the average student, the articles are fascinating and have shown the
authors many new approaches to various fields of mathematics.

American Mathematics Competitions. The AMC produces the series of tests that determine the
United States mathematics team. The tests are currently called the AMC 10, the AMC 12, the Ameri-
can Invitational Mathematics Exam (AIME), and the U.S.A. Mathematical Olympiad (USAMO). The
AMC 12 used to be called the American High School Mathematics Exam (AHSME). Top performers
in the contests are invited to the Math Olympiad Summer Program (MOP). For more information
on the contests and the MOP, visit amc.maa.org. There are a handful of problems in this book
that appeared on tests at the MOP. These were kindly provided by Professor Cecil Rousseau, who
instructed both of the authors of this text at the Math Olympiad Program in 1989.

The American Regions Mathematics League (ARML) is an annual competition in which 15-
member teams representing schools, cities, and states compete in short answer, proof, and relay
contests. The contest is held concurrently at multiple sites. The authors of this text were teammates
on the Alabama team at ARML in 1988 and 1989. We highly recommend this experience to students,
as they will learn not only about mathematics but also about teamwork. ARML's primary question
writers for the tests from which we have drawn are Gilbert Kessler and Lawrence Zimmerman. For
more information on ARML, visit www.arml . com.

David Patrick, Amanda Jones, and Naoki Sato. The original the ART of PROBLEM SOLVING
texts were written in 1993 and 1994 on old Macintosh PCs that have less computing power than most
watches now have. To produce the current edition, Amanda Jones recovered these ancient files from
our old Macs. Unfortunately, recovering the files was not enough. David Patrick reformatted and
edited the book, using his IXTEX expertise to convert our decade-old code to modern IXTgX standards.
Finally, nearly all of the diagrams of the book were re-created by Richard Rusczyk, Naoki Sato, and
Amanda Jones.

This text also contains questions from the Mu Alpha Theta (MA®) National Convention. Mu
Alpha Theta is a national high school math honor society. For more information, visit their website
at www.mualphatheta.org.

We gathered some problems from a few international sources in order to offer a wealth of
challenging problems on some advanced topics. We collected problems from the national olympiads
of Bulgaria (provided by Borislav Lazarov) and Canada (provided by Graham Wright). Both of these
sources provide excellent practice for problem solvers. We also include problems that were either
used in or proposed for the International Mathematical Olympiad (IMO). Each year many of the

countries in the world send a six person team to the IMO to participate in the Olympiad. The
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problems in this text come from the 1989 Olympiad in Germany (provided by Paul Jainta), and the
1986 and 1985 Olympiads in Poland and Finland respectively (provided by Dr. George Berzsenyi).

Key Curriculum Press produces The Geometer’s Sketchpad, which was used to generate most
of the diagrams in the first edition of this text. The Sketchpad is an amazing program that forces
students to learn geometry while producing fascinating visual output. The Sketchpad can be used
to do everything from teaching simple geometric principles in an interactive way to generating
complex fractals. For more information on the Geometer’s Sketchpad, visit www.keypress.com

Special thanks to Vanessa Rusczyk and Vladmir Vukicevic for their help in proofreading this
book and to Kai Huang, Joon Pahk, Lauren Williams, and many members of the online Art of
Problem Solving Community at www.artofproblemsolving.com, and particularly Hussain Zahid
Sheikh, Ravi and Meena Boppana, and Justin Venezuela, for their corrections for this seventh edition.

To Students

Unless you have been much more fortunate than we were, this book is unlike anything you have
used before (except Volume 1!).

The information in this book cannot be learned by osmosis. What the book teaches is not facts,
but approaches. To learn from a section, you have to read, and comprehend, the text. You will not
gain from just looking for the key formulas.

Important ideas may be in seemingly out-of-the-way places, where someone skimming might
miss them, since things are ordered by topic, not by importance. Don’t expect to find a uniform
difficulty level. Read slowly, spending minutes on a single line or equation when you need to. Fly
when you can. There will be times for both, so don’t get impatient.

Some very important concepts are introduced only in examples and exercises. Even when they
are simply meant to increase your comfort with the idea at hand, the examples and exercises are the
key to understanding the material. Read the examples with even more attention than you pay to
the rest of the text, and, no matter what kind of hurry you are in, take the time to do the exercises
thoroughly.

This book is about methods. If you find yourself memorizing formulas, you are missing the
point. The formulas should become obvious to you as you read, without need of memorization.
This is another function of the examples and exercises: to make the methods part of the way you
think, not just some process you can remember.

The subjects in this volume cover a much broader range of difficulty than those in Volume 1;
therefore, you may wish to do a lot of skipping around. If you hit a subject you simply don’t
understand, move on and return later when you've had more practice problem solving. Don’t give
up; learning takes time.

Most of all, this book is about problems. We have gone to great lengths to compile the end-of-
chapter problems and other problems in the book. Do them, as many as you possibly can. Don'’t
overload on a single subject, though, or you'll forget everything in a week. Return to each subject
every now and then, to keep your understanding current, and to see how much you've grown since
you last thought about that subject.

If you have trouble with the problems, don’t get neurotic, GET HELP! Consult other students,
consult your teachers and, as a last resort, consult the Solution Manual. Don’t give up too quickly
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and begin using the Solution Manual like a text. It should be referred to only after you’ve made z
serious effort on your own. Don'’t get discouraged. Just as importantly, if these last sentences don’t
apply to you, you should be the one other students can come to for help.

The book thus comes with one warning: you will not learn if you don’t do the problems. Cultivate
a creative understanding of the thought processes which go into solving the problems, and before
too long you will find you can do them. At that same instant you'll discover that you enjoy them!

To Teachers

the ART of PROBLEM SOLVING is our conception of what a motivated student’s instruction in
high school non-calculus mathematics should be.

We strongly feel that a student should learn all subjects simultaneously. There are two reasons
for this. First, it is better to convey the interconnectedness of it all; how geometry naturally leads
to coordinates and how those coordinates make it easy to define conic sections and th? cox.nplex
plane; how counting leads to probability, the Binomial Theorem, and number theor'et1cal ideas.
Second, it all sinks in better. Overloading on a single subject can cause students to acquire a surface
understanding which doesn’t connect to any deeper comprehension, and is thus rapidly lost.

There are many subjects in this text which your students have likely not seen before. \‘N.e feel it
is very unfortunate that students aren’t introduced to such subjects as collinearity, inequalities, and
number theory. Again in this volume we put an emphasis on geometry, which we feel is .the n?ost
neglected subject in many curricula: students take a year of geometry, then don’t ever see it again.

We also warn the teacher that the difficulty level of the subjects in this book vary much more
greatly than in the first volume. Some of the text may be too advanced for your beginners, while
other portions are likely too elementary for your advanced students. Thus, take care in the chapters
or sections you assign your students.

Our notation sometimes diverges from the accepted notation. In these cases, however, our
decisions have been made with full deliberation. We strive to use symbols which evoke their
meanings, as in the use of the less-popular | ] to denote the greatest integer function instead of the
usual [ ]. .

Each chapter of the text is meant to feel like the discussion of a subject with a friend. In one
aspect of such a discussion, the text must fail: the answering of questions. This weakness must
be repaired by teachers or strong students who are able to assume a leadership role. Teachers are
crucial to the process of the book, whether teaching the material directly or simply being available
for explanation.

We urge teachers using the ART of PROBLEM SOLVING in a classroom or club setting to
encourage students who understand certain areas to explain the subjects to the rest of the class, or
perhaps rotate such responsibility among a large group of willing students. This will not only give
the other students a different view, perhaps closer to their own thought process, but it also greatly
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enhances the teaching student’s understanding of the subject. Furthermore, the instructing student
will have a chance to see the rewards that come from teaching.

We also suggest that after covering each subject, students attempt to write problems using the
principles they have learned. In writing a problem, one does much more math than in solving one.
This further inspires the creative drive which is so essential to problem solving in math and beyond,
and if students are asked to take a crack at each others’ creations, the competitive urge will also be
tickled.

In closing, this book is about methods, not memory. The formulas we prove are important ones,
but we intend for our explanations to be such that memorization is not necessary. If a student truly
understands why a formula is true, then the formula can be internalized without memorization.
However you choose to use this book, we hope that the focus remains that students understand why
formulas work. Only in this way can they understand the full range of the formulas’ applications
and the full beauty of the mathematics they are learning.

Justify Your Love

Throughout high school and even middle school, the authors of this text participated in a lot of
math contests. After high school we then produced our own contest, The Mandelbrot Competition,
along with Sam Vandervelde. One question has persisted from the skeptics: why bother? They
argue that the math involved in competitions is largely useless for the rest of participants’ lives.
While correct (It won't be often that your boss says, “Tell me ¢(45) or you're fired!”), this argument
is misguided, because math is by far not the most important aspect of the contests.

Through math competitions and projects, students learn how to attack problems. Unlike specific
techniques, this skill is crucial to virtually any area of life. Successful problemists go on to be
successful not only in mathematics, but also in every other field (not just technical ones!) that you
can think of. The authors’ math training didn’t just make us able to write this text, but it taught us
the rewards of hard work, gave us confidence, and—most importantly—developed our ability to
solve problems.

Good problemists are very creative people. Knowing all the tools at your disposal will not always
guarantee finding a solution; the key to solving problems is cleverly choosing the right method of
attack. A great way to ‘train’ for problem solving is to do various brainstorming and other creative
ideas. Not only will these help you open your eyes to new ideas, but they can often be a lot of fun.

This is not to say that the mathematics itself is useless. Hopefully through this text and other
work, you'll develop the same interest in mathematics we have. While some people might think
we’re nuts, we view an elegant mathematical concept or a neat proof with the same admiration as
others view a Rembrandt painting or a Beethoven symphony. This is the reason for our choices of
the covers of our texts. The beauty of nature is dictated by a mathematics which we humans are still
struggling to understand.

The last and, for many, most important aspect of math contests is the people. The authors of
this text met each other and Sam, as well as many other friends, through math. When your days in
contests are over, you'll cherish the memories far more than you will the contests themselves.
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<O The eye will be found looking at especially important areas of the text. When you
see it, pay extra attention.

N

‘§>\ The threaded needle indicates particularly difficult problems or concepts. If your
hands are too shaky, you may need help from someone else.

X2 The bomb signals a warning. If you see it, tread lightly through the material it
‘ marks, making sure you won’t make the mistakes we warn against.
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Chapter 0

Prove It!

Unfortunately, proofs in the standard school curriculum are either overlooked or confined to geom-
etry classes. Proofs are absolutely essential to mathematical understanding, because if you don’t
know why a tool works, you can't use it to its full capacity. Don’t ignore the proofs in this text! While
they don’t occur in most classes of competitions, they do occur in the most challenging contests.

In Volume 1 we dedicated an entire chapter to proof techniques and the language of proofs.
We'll review certain methods here because they are the most common and have the widest variety
of uses. The many other less common techniques are scattered throughout the text, included among
the subjects where they are most commonly used.

* Contradiction. Suppose we wish to prove some statement A. We can use contradiction by
showing that if A were false, then some impossible statement would have to be true.

* Mathematical Induction. Induction is generally used to prove statements which are true for
all positive or all nonnegative integers. Suppose we wish to show that some statement B is true for
all integers n. We show that B is true for n = 1, then we show that if B is true for n = k (commonly
called the inductive hypothesis) then it is also true for n = k + 1. Hence, since B is true for n = 1, it
is true for n = 1 + 1 = 2. Therefore it is true for 2 + 1 = 3, then 4, and so on.

e Pigeonhole Principle. The Pigeonhole Principle states that given kn + 1 objects which are
placed in 1 boxes, there must be some box with at least k + 1 objects. The principle is clearly most
useful in problems where there is something that can be divided into categories.

EXAMPLE 0-1 Prove that there are infinitely many prime numbers.

Proof: Suppose there aren't infinitely many primes and look for a contradiction. Let there
be k prime numbers, namely p1, p2, ..., px. Consider the number

Z=pipap3 - pr-1px + 1.

Clearly Z isn’t divisible by any of our k prime numbers, so it must divisible by some other prime.
This contradicts our assumption that there are only k prime numbers, so there cannot be a finite
number of primes.

EXAMPLE 0-2 Let Fy = Fy-1 + Fp—2, Fo = 0 and F; = 1. Prove that for all n,

F0+P1+F2+---+Fn=F"+2—1_

4 1 »

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

2* CHAPTER 0. PROVEIT!

Proof: The recursion in the problem generates the Fibonacci numbers. There are many 1der1t1t?es
like the one in this problem which are true for Fibonacci numbers. Most of these can be proven with
mathematical induction. For this one, we prove the statement first for n = 0, for which we have
Fo = F2—1, which is obviously true, since Fy = 0 and F, = F; + Fg = 1. Now we assume the statement
is true forn = k:

Fo+F1+Fy+--+F=Fpp—1
This is our inductive hypothesis. We then wish to show the identity holds for n = k +1, or

Fo+F1+Fy+-+Fg+ Fgq =Pk+3—l.
From our inductive hypothesis, the sum Fy + F; + - - - + F; equals Fy, — 1. Hence we have

Fo+Fi+F+ - +Fc+F1 = Fro—1+F
Friz—1,

as desired.

EXAMPLE 0-3 Prove that if we select 5 points within the boundaries of a unit square, then some
pair of them are no more than V2/2 apart.

Proof: We can apply the Pigeonhole Principle by dividing the square into four
squares with side length 1/2. By the Pigeonhole Principle at least two of the points
must fall in the same square. The farthest apart two points can be in a 1/2 inch square
is V2/2, where the points are on opposite ends of a diagonal. Since there must be two
points in one of the little squares, there must somewhere be a pair of the five points at

most V2/2 apart.

Chapter 1 Logarithms page 3
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Chapter 1

Logarithms

As we mentioned in the BIG PICTURE in Volume 1, logarithms were originally devised to turn
multiplication and division problems into addition and subtraction ones. Let’s take a closer look at
how this works.

Suppose we are asked to find (1234)(5678). Normal multiplication would be quite tedious.
Instead, we note that for some x and y, we can write

10% = 1234 and 10Y = 5678,
so that
log 1234 = x and log5678 = y.
Hence, (1234)(5678) = 10%10Y = 10%*Y, Taking logarithms of this last relation (remember that a
logarithm with no base indicated is assumed to be base 10), we have
log(10¥10Y) = log(10™Y) = x + y = log 10* + log 10V.
In other words, log(1234)(5678) = log 1234 + log5678. Neat! The logarithm of a product of two
numbers is the sum of the logarithms of the two numbers.

Think about why this must be so. Recall that the value of a logarithm is an exponent. We add
exponents when we multiply two numbers with the same base. As logarithms are these exponents
(x and y above), their sum must be the exponent of the product (log(1234)(5678) = x + y above).

Now to find the product, we merely look up log 1234 and log 5678 in logarithm tables, find the
sum of the two values, then find the number z from the tables such that logz = log 1234 + log 5678.

If you try this, you may find that your logarithm table only goes from 1 to 10. How can you find
log 1234? Use scientific notation, so that

log 1234 = log(1.234)(10°) = log(1.234) + log(10%) = 3 + log 1.234.

This relationship between multiplication and addition is not the only useful property of loga-
rithms. Using the same logic as above, division becomes subtraction:

log 123478 = 5678 10g 1234,

4« 3 »
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4 *> CHAPTER 1. LOGARITHMS

These are by no means proofs, nor are these manipulations confined to base 10 logarithms. In the

following pages, we'll formalize these rules and introduce a few more, as well as show you how to
prove them.

Properties of Logarithms
1. log,b" =nlog,b
2. log,b+log,c = log, bc
3. log,b-log,c =log,b/c
4. (loga b) (logc d) = (loga d) (logc b)

log, b
log,c log b

6. log,. b" =log,b

‘ WARNING: Note that in Properties 2, 3, and 5, the bases of the logarithms added, subtracted, or
divided are the same. This is very important to understand; we can’t simplify log, x? + log, y* with
Propzergy 2 for the same reason we can’t add exponents to evaluate the product 2233, as we would
for 2223,

You should try to prove these properties on your own, as the proofs are fairly simple. Some are
proven on page 5, and the proofs of the others are left as exercises.

EXAMPLE 1-1 Evaluate each of the following in terms of x and y given x = log, 3 and y = log, 5.
i. log, 15
Solution: Since 15 = 3(5) we think of Property 2:

log, 15 = log, 3(5) = log, 3 +log, 5 = x + .

ii. log,(7.5)

Solution: Since we already know log, 15, we note that 7.5 = 15/2 and think of Property 3. This is
a bit tricky, but remember that in addition to log, 3 and log, 5, we also know log,2=1:

log,(7.5) = 10g,(15/2) = log, 15~ log,2 = x + y — 1.

iii. logy2
Solution: Since we have a different base in this than in the given quantities x and , we look for a
property which allows us to change the base. Thus, we use Property 5:

log,2 1
I = 2- -~
0832 log,3 x’

< In general, it is always true that log,,z = 1/log, w. (Can you prove it?) Remember this; you'll
probably see it again.
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iv. log, 15
Solution: First, 15 = 3(5), and we know log, 3, so we use Property 2 to get log, 15 = log; 3+log,; 5 =
1+ log; 5. Now we must find a logarithm with base 3, but we only know base 2 logarithms. This
leads us to Property 5:
log, 5 y
1 15 = = —o2v _ 1+ =,
0g315=1+log;5 1+log23 "
V. log, 9
Solution: Our base is the square of the base we are given in our information, so we look to Property
6. When working problems, always try to manipulate the bases so they are the same, or as close as
possible, throughout the problem. When working with various powers of the same number, like
2 and 4, use Property 6 like this:

log, 9 = log,, 3% = log,3 = x.

vi. logs 6
Solution: Seeing a different base that is not a power of 2, we look to Property 5. Noting that 6=2(3),
we also apply Property 2:

_log,6 log,3+log,2 x+1

g6 =
%8s © log, 5 y y

We'll now prove three of the six properties; the proofs of the other three are left as exercises. The
first step for the proofs, since we can’t do anything with the expressions as they are written, is to
write the logarithms in exponential notation. Thus, we let

x=log,b, y=1log,c, and z =log,c,

from which we have
a=b, ay=c, and V¥ =c.

These relationships will be used in the first two proofs below.

EXAMPLE 1-2 Prove Properties 1, 2, and 4.
i. Property 1: log, b" = nlog,b.

Proof: Letw = log, b". We want to show that w = nlog, b = nx. Make sure you understand why
this will complete the proof. Putting our expression for w in exponential notation, we have 2% = b".
Since a* = b, we find a¥ = b" = (a)" = a™", s0 xn = w. Thus, nlog, b = log, b".

ii. Property 2: log, b +log, ¢ = log, bc.

Proof: We wish to show that log, bc = x + y. Since * = b and a¥ = ¢, we can get the quantity x + y
by multiplying 4* and 4¥: a*a¥ = a**¥ = bc. Putting this last equality in logarithmic notation gives
us log, bc = x + y = log, b + log, c. (Notice how this proof is similar to our discussion of evaluating
log(1234)(5678).)

iii. Property 4: (log,,z b) (logc d) = (loga d) (logc b).
Proof: We let
x=log,b, y=log.d, w=log,d, and z=log,b.
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We wish to show that xy = wz. As before, we write the above logarithmic equations exponentially.
We find
b=a"=c d=a"=¢,

a=ce g =),
c&x = Jylw),
Thus we have

’

z
X

g =

from which we have the desired xy = wz.

&

Using this relation we can show that (loga b) (logb c) = log,¢, a frequently occurring identity
sometimes called the chain rule for logarithms.

It is important that you realize that these proofs are not just pulled out of thin air. They involve
methods that you should learn, namely, the practice of changing logarithmic notation to exponential
notation and manipulating the exponential expressions. Make sure you understand this method
before proceeding to the exercises. After writing logarithmic expressions in exponential notation,
ask yourself what you wish to prove in terms of the exponents (x, y, etc. above). Then, manipulate
the exponential equations to complete the proof.

EXERCISE 1-1 Prove Properties 3, 5, and 6 without using Properties 1, 2, and 4.
EXERCISE 1-2 Prove the chain rule for logarithms using Property 4.

‘ WARNING: Don't overlook the fact that the base and the argument of all logarithms must
be positive, for sometimes devious, or careless, test writers will create problems in which some
seemingly correct solutions violate one of these rules.

EXAMPLE 1-3 Find all x such that log (x + 2) +log, (x +3) = 1.

Solution: Seeing the sum of two logarithms with the same base, we think of Property 2, which
yields
logg (x +2) + logg (x + 3) = log (x* +5x + 6) = 1.

Putting this equation in exponential notation gives x2 + 5x + 6 = 6, or x? + 5x = 0, so our solutions
are x = =5 and x = 0. You may be tempted to stop here and claim that these are both valid solutions,
but your last step in all problems involving logarithms must be checking that each solution makes
the argument and the base of all logarithms positive. In the given problem the arguments of the
initial logarithms are negative when x = -5, so this is not a valid solution. The only valid solution
isx=0.

EXAMPLE 1-4 Find the sum

9

1 2
logi +log§+log%+---+log%.
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Solution: Seeing the sum of logarithms we think of log x + log y = log xy. Calling our given sum
S, this identity gives

123 97 98 9 1 R
S [ e D o v s s s 22N = Tog e Tog 10 2 =2,
8 (2 3247798 99 100) log 700 = 108

Notice that in the product every number from 2 to 99 appears once in the numerator and once in the
denominator, so they all cancel.

EXERCISE 1-3 Find log, 10 and log, 1.2 in terms of x = log; 4 and y = log; 3.

EXERCISE 1-4 Twant to use my calculator to evaluate log, 3, but my calculator only does logarithms

inbase 10. Should I go find a better calculator, or should I be able to find a way to make my calculator
tell me log, 3?

EXERCISE 1-5 Show that x!°8:¥ =y,

Problems to Solve for Chapter 1

1. Evaluate the product (log, 3)(log, 4)(log, 5)(logs 6)(log, 7)(log; 8).

2. If log 36 = a and log 125 = b, express log(1/12) in terms of 2 and b. (MA® 1992)

3. In how many points do the graphs of y = 2log x and y = log 2x intersect? (AHSME 1961)
4. Find all the solutions of

P
ogx; . &
208 = 105"
(AHSME 1962)
log, (1
5.Ifa>1,b>1,andp = %"g%’), then find a” in simplest form. (AHSME 1982)
b

6. If one uses only the information 10* = 1000, 10* = 10000, 2'% = 1024, 211 = 2048, 212 = 4096,
213 = 8192, what are the largest 2 and smallest b such that one can prove a < log,,2 < b? (AHSME 1967)

7. For all positive numbers x # 1, simplify

1 1 1
+ :
log;x logyx logsx

(AHSME 1978)

8. Given that log;,2 ~ 0.3010, how many digits are in 5%? (MA@ 1991)

9. If logg 3 = P and log, 5 = Q, express log,, 5 in terms of P and Q. (MA® 1990)

10. Suppose that p and g are positive numbers for which s.\
logyp = log), q = log4(p +9).

What is the value of q/p? (AHSME 1988)
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‘5\ 11. Given that log,, 40 V3 = log;, 45, find n3. (MA® 1991)
\ 12. Suppose a and b are positive numbers for which

logg a = log,; b = log,s(a + 2b).
What is the value of b/a? (MA® 1992)

$_ 13.1f60° = 3and 60" = 5, then find 12((1-0-b/2-2b)], (AHSME 1983)

the ART of PROBLEM SOLVING: Volume 2 < 9

——the BIG PICTURE

One area in which logarithms play a surprisingly large role is music. Musical sound is
created by something vibrating—a string on a violin, a column of air in a flute. The rate of
vibration translates to a pitch; the faster the vibration, the higher the pitch. For instance, top
C on a flute is 2048 Hz (Hz, or Hertz, means “cycles per second,” so this is 2048 vibrations per
second), a violin’s low G is 192 Hz, and bottom A on a piano is 27.5 Hz.

Notes played together either “sound good” or they don’t. This sounding good corresponds
to the frequency of one tone being a nice multiple of another. Two tones an octave apart have
frequencies differing by a factor of two, like middle C (256 Hz) and the next C up (512 Hz); two
tones a major fifth apart have frequencies in the ratio 3/2, as C (256) and the next G up (384).
On the other hand, tones with nasty frequency ratios (say 31/17) sound displeasing, in part
because the ear hears not only the two frequencies, but an artificial beat frequency resulting
from the times when the two vibrations are in sync.

Scales were originally formed on the basis of frequency ratios described, but such scales
were found to be lacking. A scale in which every note was the right frequency multiple of C
would no longer work when Aff was the central note. The resolution of this problem came with
the discovery of even tempering in the early 1700’s, in which the octave was divided up into
12 pieces such that each frequency was the right multiple of the last. To see how this works,
let the octave go from frequency F to 2F. For some multiplier m, the scale would be F, Fm, F m?,
Fm3, -+, Fm!2 = 2F. Solving this last equation, we find that the multiplier is 2}/12. Why is this
scale special? Suppose we wanted to start four notes up, at Fm?3; the scale would then be Fm?,
Fm*, Em®, ..., all notes in the original scale. The scale works in any key.

We can find out about what note a tone at 1.5F is by solving 1.5F = 2¥/12F for k as k =
12log, 1.5~ 7. Thus our note is seven notes up, so it'sa G.

Even with an even-tempered scale, we’d still like to get, as closely as possible, nice frequency
ratios; otherwise our mathematically perfect scale will contain no worthwhile harmonies. But
it does. For example, we found above that the tone 1.5F = 3F/2 is almost exactly seven notes
up the scale. Check for yourself where other notes which harmonize well with F, like 4F/3 or
5F/4, end up in the new scale; it turns out the new scale does very well musically as well as
mathematically. J. S. Bach proved this explicitly in his Well-Tempered Clavier, which contained
pieces in every major and minor key. :

Chapter 2 Not Just For Right Triangles page 10
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Chapter 2
Not Just For Right Triangles

2.1 Trigonometric Functions

In Volume 1 we introduced sine, cosine, and other trigonometric quantities as ratios of sides of a
right triangle. In fact, these quantities are used for much more than just right triangle geometry.
To be able to use them as widely as possible we must first understand what the values of sine and
cosine are for non-acute angles.

Consider the unit circle; that is, the circle with radius 1 centered at the origin. Any point on
the circle can be described by the polar coordinates (r,6) = (1,6). For example, the point (0,1) in
rectangular coordinates can be described by (1,90°) in polar coordinates. It could also, however,
be described by (1,450°), since we could go around the circle once before continuing 90° more to
our final point, for a total of 360° + 90° = 450°. Conversely, given the coordinates (1,450°), we
could convert to the more manageable (1,90°). By adding multiples of 360° (or 27), we can find
an equivalent angle between 0° and 360° for any angle, even negative angles (which mean going
around the circle clockwise rather than counterclockwise).

EXAMPLE 2-1 Find angles between 0° and 360° which are the same as —7t/2, 1180°, and 97 /4.

Solution: The first is negative, so we add 2rm: —7n/2 + 2 = 3m/2. The last are both over
360°, so we subtract, sometimes repeatedly:

1180° = 1180° — 360° = 820° = 460° = 100°

9n/4 =91 /4 - 21t = m/4.

Why are we fussing with the unit circle when we are supposed to be dis- Yy
cussing sines and cosines? First consider an acute angle 6 as shown in the
diagram. The point described by (1,6) is in the first quadrant. If we draw

an altitude from A to B on the x axis and see that ZAOB = 6, we can find the Q ) X

(x, y) coordinates of point A from trigonometric relations applied to AAOB. For
example, since cos 6 = OB/AO = OB (since OA = 1), we have x = OB = cos 6.
Similarly, y = AB = sin 6. Thus the rectangular coordinates of the polar point
A = (1,6) are (cos 6, sin 6).

10 »
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Impressed by this success, we could nafvely try to apply it to (1,6) for an obtuse angle 6. But
we don’t know what cos 6 and sin 6 are for obtuse 8! To solve this problem, we simply define cos &
and sin 6 to be the Cartesian coordinates of the polar point (1, 6).

Now matters are a little trickier. We’ll consider 6 = 150°. Once again, we
draw an altitude from A to point B on the x axis. Since ZAOC = 150°, we have
LAOB = 30°. Thus we find x = —OB = — cos 30°, where we have a negative sign
since B is clearly on the negative x axis. Hence, cos 150° = —cos30° = — V3/2.
Similarly, we see that sin150° = AB = sin30° = 1/2, where we have a positive
result since A is above the x axis.

This gives a general method to find the sine and cosine of any angle, whether
acute, obtuse, or worse. First we determine which quadrant the angle is in, then we draw the picture
and make a right triangle by drawing an altitude to the x axis. We use basic trigonometry to get
the rectangular coordinates (x, y) of the point (1, 6), remembering that points to the left of the y axis
have a negative x and those below the x axis have a negative y. We then set cos 6 = xand sin6 = y.

EXAMPLE 2-2 Find tan7m/4.

Solution: First we determine the quadrant of 7n/4. Since 77/4 is greater y
than 371/2 and less than 27, the angle is in the fourth quadrant, as shown. We
draw our altitude and find ZBOA. Since the arc from C to A counterclockwise
has measure 71/4 radians and an entire circle has 2n radians, the remaining
arc AC has 27 — 71/4 = 1/4 radians. Thus OB = cos7t/4 = V2/2 and AB =
sin7/4 = V2/2. Since A is in the fourth quadrant, x is positive and y is negative, A
so cos7nt/4 = OB = ¥2/2 and sin7n/4 = ~AB = — V2/2. Hence we have

sin7n/4 _
cos7m/4 ~

(Notice that we found the sine and cosine of the angle and then used these to determine the tangent;
this is how we will almost always determine trigonometric functions.)

tan7n/4 =

-1.

Do not be too intimidated by this example; finding sines and cosines is very easy once you've
had practice. Eventually you'll be able to do all this reasoning in your head quite quickly.

EXERCISE 2-1 In what quadrants are 30°, 700°, 571/3, and —-37t/5?

EXERCISE 2-2 How would we find sin 6 and cos 0 if the point (1, 6) is on the x axis? the y axis? For = O>
what angles 6 does this occur?

EXERCISE 2-3 Evaluate sin300°, cos 225°, csc 150°, cot 51t/3, tan 11, and sec 57/6.

EXERCISE 2-4 Evaluate more trig (shorthand for trigonometric or trigonometry) functions using
angles which are multiples of 30° or 45°. Then use a calculator to check your work.

EXERCISE 2-5 Always make sure your sign (positive or negative) is correct when evaluating trig = (D
functions. How can we tell what the signs of cos 6 and sin 6 are given an angle 6?

It’s awfully easy to mix up the cosine and sine values for multiples of 30°. If you're ever confused, ‘

draw the angle on the unit circle; using the resulting geometry you should be able to reason which
is which.
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EXAMPLE 2-3 Use our geometric approach to show that for any obtuse angle 6, sin 6 = sin(r — 6).

Solution: In our figure we have AB = sin ZAOB from right triangle AOB
(with AO = 1). Since A is in the second quadrant, we have AB = sin /ZAOC = 4
sin 6. Equating these expressions for AB, we find

y\
sin 6 = sin LAOB = sin(n - 0) B Ojf

as desired.

EXERCISE 2-6 Use the same reasoning as above to show that cos 6 = —cos(m — 6).

2.2 Graphing Trigonometric Functions

Knowing what a function looks like is often quite useful in understanding problems involving the

function. In this section we'll discuss the graphs of the basic trigonometric functions sin x, cos x, and
tanx.

For cosine, we know thatcos0 = 1,cos /2 = cos 3mt/2 = 1Y
0, and cosm = —1. We also know that outside the range /\ /]\ /\
0 < x < 2m, the values of cosine repeat those inside the . ; , )
range (since the angles outside the range [0,27) are equiv- =27 \ —7 0 T 2n X
alent to those inside). Thus, we sketch cos x for the range 1
0 < x < 2m and continue this pattern indefinitely in both
directions as above. This graphical form is called a sinusoid.

1 y Using the same analysis as for cosine we can generate

/\ ]/\ / the graph of sinx, shown at left. Make sure you see how

e this graph describes sine. Look for particular points you

]Qn —\/lo \/ﬂ ¥ know, like sinm/2 = 1, and look for where you know sine

/4 is positive. Graphing tanx is a little trickier, and we do

so by noting that tanx = sinx/ cosx. Since sin0 = 0 and

cos 0 = 1, the graph of tan x must pass through the origin. Since sine and cosine are both positive in

the first quadrant, tan x is positive for 0 < x < 7/2. Finally, since cos x gets closer and closer to zero

as we approach x = 71/2, tanx gets larger and larger. Try dividing 1 by 0.1, 0.01, and 0.001 to see

what happens to tan x as we approach x = 7/2.

On the other side of the origin, where the angle is in

y
quadrant IV for —n/2 < x < 0 (make sure you see why), .
sine is negative and cosine is positive, so tan x is negative.
. 2+
As before, as we approach x = —7t/2, cosine approaches 0,
n T 0 n ¥

so the magnitude of tan x grows and grows, producing the
graph on the right. (It continues past y = 4 upward and
y = —4 downward.) Unlike the graphs of sinx and cosx,

the graph of tan x repeats after every interval of length n 2
rather than 2. (Why?) Use your knowledge of secx, cscx,
and cot x to graph these functions. =4

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

the ART of PROBLEM SOLVING: Volume 2 < 13

EXERCISE 2-7 Before proceeding, make sure you are satisfied that the above graphs do indeed
represent sine, cosine and tangent.

Now that we understand the trigonometric functions, let’s try applying the functional transfor-
mations we discussed in Volume 1 to trig functions.

We'll start by letting f(x) = sinx. The values of this function range from -1 to 1. It follows that
the function 2f(x) (a vertical stretch of f(x)) varies from —2 to 2. This length of this range can be used
to help describe trigonometric functions. The amplitude of a graph is half the difference between its
largest and smallest values. Thus, for f(x) = sinx, the amplitude is 1 and that of 2f(x) = 2sinx is 2.
A simple extension of this reveals that for any trigonometric function, the amplitude is dictated by
the coefficient of the function. (Remember, amplitude measures a distance so it is never negative.)

Let’s look at f(2x) = sin2x. At right are the graphs of %% LN ,—\
f(x) (solid line) and f(2x) (dashed line). The transformation o, AN A
f(2x) is a horizontal shrink by a factor of 2. Thus, while f(x) LN / / “\
goes from 0 to 1 as x goes from 0 to 7/2, f(2x) goes from 0 ™ \ A \ T,l' Y A=
to 1 in half this interval. s o 4

?
\I/

We now are ready to define the period as the amount
of the graph (in terms of x) we can draw before we must start repeating. For example, to graph
f(2x) we draw the graph from x = 0 to x = 7t then repeat this range indefinitely. Thus, the period of
f(2x) = sin2x is 7t. Similarly, the period of sin x is 27t. Clearly, the coefficient of x in our trig functions
determines the period, since this coefficient is responsible for the horizontal shrinking or stretching
of the graph. From this analysis of period, we see that the period of f(kx) = sinkx is 2n/k for all k
since f(x) is shrunk by a factor of k by the transformation f(kx).

Related to the period of a function is the frequency, or how often the graph of the function
repeats. For example, the graph of sinx repeats every 27, so the frequency is one per 27, or 1/(2n).
Since a graph of a function repeats every period of the graph, the frequency is always 1/(period).

Having looked at a horizontal shrink, we move on to the

II/\,’\ horizontal slide f(x—7/2) = sin(x7/2). The graphs of £(x)
' / __, (solidline) and f(x—m/2) (dashed line) are shown at left. As

-n N0 n \\/\277" discussed in Volume 1, the transformation f(x—m/2) results
\_: o ‘.. inamn/2slide to the right of f(x). We define the phase shift

of a function f(x—k) as the amount the graph is shifted from
the “parent’ function f(x). If a direction is not given for the phase shift, a positive phase shift is to

the right and a negative to the left. &

\l/

\l/

WARNING: What about the phase shift of sin(2x — 71/2)? Referring to our above discussion of
phase shift, the “parent’ function is g(x) = sin2x, since sin(2x — 11/2) is a shift of sin 2x, not a shift
of sinx. (Graph them and see!) The desired function sin(2x — 71/2) is g(x — 71/4) (make sure you see
this), so the phase shift is 77/4 to the right, not /2.

EXAMPLE 2-4 Determine the period, amplitude, phase shift, and frequency of f(x) = 3 sin(4x+1)+7.

Solution: Since the period of sinx is 2, the period of f(x) is 2n/4 = m/2. Since 3sin(4x + )
ranges from 3 to -3, f(x) ranges from 3 +7 = 10 to —=3 + 7 = 4, so the amplitude is (10 — 4)/2 = 3.
Notice that the amplitude is still the coefficient of the trigonometric function despite the ‘+7".
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For the phase shift, we see that the parent function is g(x) = sindx + 7 and f(x) = glx + m/4).
Hence the phase shift is x = —n/4 (or 71/4 to the left). Finally, the frequency is just the reciprocal of
the period, or 2/7.

EXERCISE 2-8 Prove that the phase shift of f(x) = sin(ax + b) is —b/a.
EXAMPLE 2-5 Find the frequency, period, and amplitude of the function at right.

Solution: The important thing here is that trigonometric functions y
are not the only periodic functions; there are many, many functions
which repeat over and over. Draw some yourself! Since the given
graph repeats every 3 units, its period is 3 and its frequency is 1/3.
Since it varies from -2 to 5, its amplitude is [5 - (=2)]/2 = 3.5. 2‘{/ 3|/ 6V 9V T " x

@5 EXERCISE 2-9 What is the period of tan2x? (Not 1t!)

2.3 Going Backwards

Suppose we are 1000 feet away from a 500 foot tall tower and we wish
to aim a laser at a mirror mounted on top of the tower. At what angle 6
should we aim the laser? Although we don’t have the angle immediately,
we do have enough information to figure it out. The tangent of the desired

. 6 angle is 500/1000 = 1/2. Looking back at our graph of tan x, we see there
is only one acute angle 8 for which tan 8 = 1/2. This is our desired angle,
and we write it as & = tan1(1/2). This is also often written as 6 = arctan(1/2). WARNING: The

expression tan™! y does not mean 1/(tan y), and the same is true of the other trigonometric functions.
To write the reciprocal of sinx, we must write (sinx)~!. (Unlike sin®x, which does mean (sin x)2.
Sorry for this discrepancy, but we didn’t make the rules!)

Even a casual glance at the graph of tanx will show that there are actually many values of x
at which tanx = 1/2. How do we know which one is intended by the expression tan™1(1/2)? We
don’t. There are infinitely many values of tan~1(1/2). To show that we want the acute angle as in
the diagram above (rather than one of the other values), we write 6 = Tan™!1/2, where the capital
T shows that we are interested only in the principal value, or the value that lies in the first period
of tanx. Since this period ranges from —7/2 to n/2, we will always have -1/2 < Tan™!x < n/2.
Similarly, Arctan x implies the principal value as well.

If we apply this concept to Sin™ 1/2, we will note that there are still two values of x in the first
period of sinx for which sinx = 1/2. Thus we need to restrict ourselves to the first half-period in
which sin x ranges from -1 to 1. So, we have —n/2 < Sin~! y < m/2. (Note that Sin™? y can equal 71/2
or —7t/2, while Tan™! y cannot.)

After seeing that the principal values of inverse sine and inverse tangent are both between —m/2
and 71/2, we may suspect that the principal values of inverse cosine are also in that range. So what
is Cos™}(=1/2)? For all x in the range from —n/2 to /2, cos x is positive. This is clearly not the right
range. We should use 0 < Arccosx < 7 instead. Convince yourself by looking at the graph of cos x
that this is a sufficient range.

&
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EXAMPLE 2-6 Find sin™! 0 and Arcsec?.

Solution: Since sin x = 0 at all x which are integral multiples of , we can write sin~10 = nm, for
fn=0—2,~1;0,1;2,....

Since secx = 1/ cosx, for Arcsec2 we seek the angle in the range [0, 1) such that cosx = 1/2.
Thus, x = 71/3. Is it clear why the principal values of inverse secant are in the same range as those of
inverse cosine?

EXERCISE 2-10 What is wrong with the statement sin™! 1 —Sin™11 = 0?

EXERCISE 2-11 Evaluate arccsc -1, Cos™ V2/2, and Arctan(— V3/3).

24 Tying It All Together

Since the graphs of sin x and cos x are very similar, you may suspect that they can be easily related.
You're right. First, since sinx is the same as cosx shifted to the right by 7/2, we can say sinx =
cos(x — 1/2). (Look at the graphs and see!)

In the graph at right, we have plotted sin x and sin(x— 1) o1 ey
on the same graph. We see that sin(x — 7) is the reflection SN ]/\ =N
of sinx in the x axis! Thus, sin(x — 1) is everywhere the Z ¥

-1

negative of sinx, or sin(x - n) = —sinx. Try finding the ~™ 4 ¥ 2y *
relationship between cos x and cos(x — 7). N
Now consider reflections in the y axis. Just as —f(x) is

the reflection of f(x) in the x axis, f(—x) is the reflection of f(x) in the y axis. Choose a few functions
f(x) and plot the functions and the respective f(-x) to see their relationships to each other. Applying
this principle to cosx, we see that the reflection of cosx in the y axis gives the same graph back.
Thus, cos(—x) = cos x, so we find that cos x is an even function.

s, d y . The reflection of sin x in the y axis is another matter. As
F 1 N with sin(x — n), sin(~x) is everywhere the negative of sin x,
/ N so sinx = —sin(—x) and sin x is an odd function.

"\_/10\ /,7\/27’: When working with expressions involving negatives EO>
5 Nt and multiples of 90° as we have above, it is often useful

to look at the graphs of the resulting functions to determine
their connections to sinx, cosx, or tanx. While we will Jater examine faster methods to do this,

it is very important to learn how the trigonometric functions are related and to understand their
graphical representations.

s

EXAMPLE 2-7 Use graphical analysis as above to show sinx = cos(90° - x), which we showed in
Volume 1 using the geometry of right triangles.
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Solution: We’ll draw cos(7/2~-x) in steps. First we draw 1y . -

cos(—x) by reflecting cos x in the y axis (the dashed lines in J 1/\/\\ r

the graph). Then we draw cos(1/2 - x) = cos(-x + 11/2) by A ~—T 50 x

shifting the graph of cos(~x) to the right by 7/2 (the solid ~" \_// v % /

lines). Make sure you see that why this is a shift to the right, X 1 it

not the left. The resulting graph of cos(—x +71/2) is the same
as sinx, as you can verify.

EXERCISE 2-12 Which of the following functions are odd and which are even: sinx, cosx, tanx,
cscx, secx, and cot x?

EXERCISE 2-13 Find each of the following as trigonometric functions of x: sec(270° +x), cos(rt +),
tan(450° + x), and sin(3n — x).

We've figured out how to handle trigonometric functions of sums and differences f’f angles where
one of the angles is a multiple of 90°. How about other angles? To answer this, we will use a method
proposed by Masakazu Nihei of Japan in Mathematics & Informatics Quarterly (Vol. 3, No. 2).

4 Consider the triangle ABC at left. We'll find the area of this triangle in two
ways, both as }(AB)(AC)(sin ZBAC) and also as [ABH] + [ACH]. Welet AH =1
and express the sides of right triangles ACH and ABH in terms of a and . (For
[
H

example, cosa = AH/AB = 1/AB so AB =1/ cos a.) Hence, we have

C
[ABC] = [ABH]+ [ACH]
J(AC)(AB)(sin LBAC) = L(AH)(BH) + 1(AH)(CH)
%(1/ cos B)(1/ cos a)(sin ZBAC) = %(1)(tan a)+ %(1)(tan B)
sinfa+p) _ sina " sin
cosacosf ~ cosa cosf

sin(a + )

sinacosf +sinfcosa,

where we get the last equation by multiplying both sides by cosacosp. This equation and the
similar equations which are introduced below can be used to find trigonometric functions of sums
and differences of angles.

Note that you will find no eyeballs staring at the problems below. This is because they are all,
every single one, very important, and it would be silly to have eight or nine eyeballs.

N

EXAMPLE 2-8 Find sin105°.

Solution: Let’s write 105° as the sum of angles whose sine and cosine we can easily evalu-
ate. Since multiples of 30° and 45° are manageable, we have

sin 105°

sin(60° + 45°)
sin 60° cos 45° + sin45° cos 60°

(V6 + V2)/4.

This gives us a slick method to handle angles which are multiples of 15° but not multiples of 30°.
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EXERCISE 2-14 Use the figure at right to show that 4
sin(a — B) = sina cos  — sinfcos a. ﬁ

B C D

EXERCISE 2-15 How could we use our expression for sin(a + ) to derive an expression for sin(a - g)
without using geometry?

EXAMPLE 2-9 Use sin(90° — a) = cos a to find an expression for cos(a + p) similar to those above.

Solution: Since cos(a + B) = sin(90° — a — B), we have

cos(@+p) = sin([90° —a] - p)
sin(90 — a) cos B — sin B cos(90 — a)

= cosacosp —sinasinp.

EXERCISE 2-16 Find an expression for cos(a — f).
EXAMPLE 2-10 Find tan(a + f) in terms of tana and tan .

Solution: First we'll write the tangent in terms of sine and cosine:

sin(a + )
cos(a + B)
sina cos B + sinfcosa
cosacosf —sinasinB’

tan(a + )

We can divide the top and bottom of this fraction by cos a cos g, yielding

tana + tan g
1-tanatang’

EXERCISE 2-17 Find cot(a — ) in terms of cota and cot B.

tan(a + B) =

EXERCISE 2-18 (Finally some numbers!) Evaluate sin15°, sec57/12, and cos(-345°).

Once again, it is not necessary to memorize all of these formulas; once you have used them a
couple times though, it is hard not to. It is perhaps best to know just sin(a + §) by heart; it's easy to
derive the rest quickly from that one, as we have seen.

An important application of the sum and difference formulas is in handling expressions like
sin2x. Writing sin2x = sin(x + x) and using the sum formula, we generate one of the double angle
formulas,

sin2x = 2sin x cos x.

Similarly, we find that
cos2x = cos? x — sin? x
and
tanzx = Zh&'
1-tan?x
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Use the sum formulas for cosine and tangent to prove these. Using sin’x + cos?x = 1, which we
proved in the first volume, we can write cos 2x in a couple other, equally useful, ways:

cos2x = 2costx-1
1-2sin?x.

These two are often used to evaluate integrals involving cosines and sines, so when you learn integral
calculus, you'll be seeing them again.

Related to sin®x + cos? x = 1 are the identities 1 + tan?x = sec?x and 1 + cot? x = csc?x, which
were also discussed in the first volume. (And which you should be able to prove quickly.) These
three identities are clearly most useful when working with squares of trigonometric functions.

@% EXAMPLE 2-11 Use the above formula for cos 2x to create formulas for sin x/2 and cos x/2.

Solution: Applying our double angle formulas to cos x, we have
X sa¥ 5. aX 4 g suuah
cosx = cos” 7 —sin 2—2cos 2 1=1-2sin 5

The first of the three expressions for cos x isn't terribly useful, but the second and third are, as we
can solve for the desired expressions in terms of cos x:

cosf < 1+ cosx
2 2

sinf - 1-cosx
2 2

The + signs are a result of taking square roots. How do we know which to use? We use our
knowledge of the signs of sine and cosine. If x/2 is in the first quadrant, we use + for both, and so
on.

EXERCISE 2-19 Use the above formula for sin x/2 to determine sin 15°.

EXERCISE 2-20 When I use sin(60° — 45°) to evaluate sin15°, I get (V6 — v2)/4, but when I use
sin(30°/2), I get ( V2- \/5} /2. Have I done something wrong? Which method is easier?

EXERCISE 2-21 Find two expressions which contain no square roots for tanx/2 in terms of sin x
and cos x.

EXAMPLE 2-12 Find the amplitude of f(x) = 3sinx + cosx.

Solution: We might be tempted to say the answer is (3 + 1) = 4, but this is not right. (Can
you find an x for which this function equals 4?) If we can express this sum as a single sine or cosine,
we can find the amplitude easily.

Recall our formula for sin(x + y),
sin(x + y) = sinxcos y + sin y cos x.

Comparing this to f(x), we can write the function as a single sine if we find an angle y for which
cosy = 3 and siny = 1. However, cosy = 3 is ridiculous for real numbers y. A little better is

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

the ART of PROBLEM SOLVING: Volume 2 < 19

f(x)/4 = (3/4)sinx + (1/4) cos x. Now we need an angle for which cosy = 3/4 and siny = 1/4. Stilll
no such angle exists, because these values violate sin? y +cos? y = 1. We're not lost yet, though. Let’s
try a generic scaling A, so we can write

Af(x) =3Asinx + Acosx,
where cosy = 3A and siny = A. We thus have sin?y + cos? y = 1042 = 1, or A = 1/ V10. We then

have
f&)
V10

Thus f(x) = V10sin(x + y). Remembering that y is a constant angle, the amplitude of f(x)is V10.

= cos ysinx + cosxsin y = sin(x + ¥).

EXERCISE 2-22 Notice that the answer to the previous problem is V32 + 12, where the: 3 and the 1
are the coefficients of sine and cosine. Is this true in general, i.e. is the amplitude of asinx + bcosx

always Va2 + b2?
EXAMPLE 2-13 Find the period of f(x) = sin2x + cos 3x.

Solution: The period of sin 2x (light dashed line) is 7 and that of cos 3x (light dotted line) is 27/3.
In one full period of length T of f(x), both sin2x and cos 3x must go through an integral number
of periods. (Why?) Hence, for some positive integers m and n, we have T = mn = 2nmn/3. Writing
this as n = 3m/2, the smallest possible solutions are (m,n) = (2,3). (Why do we want the smallest
solutions?) The period of f(x) is then T = 2.

EXERCISE 2-23 Extend the above argument to find the period of sin(ax/b) + cos(cx/d), where a, b, §\
¢, and d are integers and a/b and c/d are in lowest terms.

To derive a final set of trig identities, notice what happens when we add cos(x + y) and cos(x — Y).
The products of sines cancel and we are left with 2 cos x cos y! Thus

cos(x + y) + cos(x — y) = 2cos X cos .

Letting @ = x + y and § = x — y, we can write this as

cosa + cos B = 2cos (a;ﬁ) cos (a_;ﬁ) ‘
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Similarly, we can find the following expressions:

cosa—cosf = -2sin (“;ﬁ) s a_;_é)
sina+sinf = Zsin(a;ﬁ)cos(a;ﬁ)
sina—sinf = Zcos(a;ﬁ) sin(a—;—ﬁ).

2.5 Solving Problems Using Trigonometric Identities

Look closely at each of the following examples; each one exhibits a common technique in attacking
problems using the trig identities of the previous sections. Some methods of solving these trig
identity problems are discussed below, but the best tool is experience, SO take the time to work
through all the problems yourself.

> Look for angles whose sum or difference is a multiple of 90°. If these exist, we can often use
our relations like sin(180° — x) = sin x and sin(90° — x) = cos x.

> When you see squares of trigonometric relations, try using sin®x + cos?x = 1 or the related
identities.

> Look for pairs of angles whose ratio is a power of 2. For example,

sin20° _ 2sin10° cos 10°
cos10° ~ cos 10°

= 2sin10°.

Using the double angle formulas as above will often simplify such expressions.

> When working with the trigonometric functions besides sine and cosine, it is often helpful to
write the problem in terms of just sine and cosine.

> Don’t work with inverse trig functions. Apply trigonometric functions to equations involving
inverse trig functions to get rid of them.

EXAMPLE 2-14 Evaluate
tan 10° tan 20° tan 30° - - - tan 80°.

Solution: Writing this in terms of sines and cosines, we have
sin 10° sin 20° sin 30° - - - sin 80°
c0s 10° cos 20° cos 30° - - - cos 80°

Applying sinx = cos(90° — x) to each term in the numerator, we get

c0s 80° cos 70° cos 60° - - - cos 10°
c0s 10° cos 20° cos 30° - - - cos 80°

EXAMPLE 2-15 Write

(sin13° + sin 167° + cos 13° + cos 167°)(sin 13° — sin 167° + cos 13° — cos 167°)

in the form asin x°.
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Solution: Instead of multiplying out the product, we note that 13° + 167° = 180° and use the rela-
tions sin x = sin(180°—x) and cos x = — cos(180° —x). Thus sin 13° = sin 167° and cos 13° = — cos 167°,
and our product is

(25in 13°)(2 cos 13°) = 45in 13° cos 13° = 2sin 26°.

EXAMPLE 2-16 Find xif Tan ' x = Tan"' 4 + Tan"! 6.

Solution: Working with inverse functions is pretty difficult, so how do we get rid of them?
Simply use tan(Tan™" y) = y. Taking tangents of both sides of the given equation, we have

x = tan(Tan !4+ Tan"16)
tan(Tan"" 4) + tan(Tan™! 6)
1 - tan(Tan"! 4) tan(Tan "' 6)

(4+6)/(1-4-6) =—-10/23.

EXAMPLE 2-17 Find secx in terms of y if x = Tan"! .

Solution: Taking tangents of the given equation, we have tanx = y. Using 1 + tan” x = sec’x, we

getsec?x =1+ y? orsecx = + /1 + y2.

2sinx — cosx sin2x
sin2x secx

for x such that 0° < x < 90°. (MA® 1992)

EXERCISE 2-24 Simplify \/

You will have many more opportunities to try your hand at using trigonometric identities in the
problems below. You will also be asked to solve equations given in terms of trigonometric functions.
Two important guidelines for solving these are:

> Write the equation as f(x) = 0 and use all the identities you know to factor f(x) as much as
possible. (Double angle formulas and cos?x +sin’x = 1 are very useful here.) Setting each factor
equal to 0 should then give you all the answers. It is often useful to write the equation in terms of a
single trigonometric function.

> Given a value for sinx + cosx or sinx — cos x, we can find sin 2x, and hence x, by squaring the
given relation. Try it and see!

Problems to Solve for Chapter 2

14. Find the value of sin® 10° + sin? 20° + sin? 30° + - -+ + sin? 90°. (MA® 1992)
15. Evaluate csc (Arcsin 1 — Arccos }). (MA® 1991)
16. Given that Arcsinx = y, find tan y in terms of x.

17. Given a positive integer 7 and a number ¢, -1 < ¢ < 1, for how many values of g in [0,27) is
sinng = c? (MA© 1992)

18. Given the triangle ABC with side a opposite £A, side b opposite /B, and side c opposite C, find
sinA +sin2B +sin3Cifa = 3,b = 4, and c = 5. (MA®© 1991)
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19. Solve for x: Arctan § + Arctan & = Z. (MA® 1991)
20. Find the period of 2 sin(4nx + 71/2) + 3 cos(5mx). (MA© 1992)
21. Write sin® x in terms of cos 2x and cos 4x. (MA® 1991)
22. Which of the following equals cot 10 + tan 5: csc5, csc 10, sec5, sec 10, or sin 157 (AHSME 1989)
23. If sinx = cos2x and 0 < x < 71/2, then find x. (MA® 1992)
24. Prove the following equalities. (M&IQ 1992)
i. sin10° sin20° sin 30° = sin 10° sin 10° sin 100°;

ii. sin20°sin20°sin30° = sin 10° sin 20° sin 80°;

iii. sin20°sin30°sin30° = sin 10° sin 40° sin 50°.
25. Compute the number of degrees in the smallest positive angle x such that

8sinxcos® x — 8sin’ xcosx = 1.
(ARML 1988)

26. If sinx + cosx = —1/5 and 37/4 < x < 7, find the value of cos 2x. (MA® 1992)
27. If 0° < x < 180° and cos x + sinx = 1/2, then find (p, q) such that tanx = _stﬁ. (ARML 1988)

28. Quadrilateral ABCD is inscribed in a circle with diameter AD = 4. If sides AB C

B
and BC each have length 1, then find CD. (AHSME 1971)

29. Find tanx if
sin® x . cos’x _ —sin(2x) +1

3 7 10 A

(MA® 1991)

30. If A = 20° and B = 25°, then find the value of (1 + tan A)(1 + tan B). (AHSME 1985)

/ -1 ; 2
31. If 0 is acute and sin %6 = %x_' then find tan 6 in terms of x. (AHSME 1973)

32. If ABCD is a trapezoid with DC parallel to AB, /DCB is a right angle, DC = 6, D C
BC = 4, AB = y, and LADB = x, find y in terms of x. (MA® 1990)

\ 33. Evaluate cos 36° — cos72°. (AHSME 1975) A 3

\ 34. Using the area of a regular pentagon, prove that 4 sin I+ tan 2t = 5cot 5. (M&IQ 1993)

§\ 35. Use a 36°-72°-72° triangle to prove that sin18° = (V5 - 1)/4 and cos 36° = (V5 + 1)/4.
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——the BIG PICTURE

In the 1700’s, Daniel Bernoulli, one of a large family of brilliant mathematicians and physi-
cists, was studying the vibration of guitar strings. Supposing the string is of length 1, the
fundamental vibration of the string can be represented as sin7x. With this function, the two
ends are fixed at zero, while the middle vibrates freely. (Plot the function for0 < x <1 and
see.)

Bernoulli knew that when a string is plucked, you hear more than just the fundamental
vibration, however; you hear a series of overtones with vibrational speed two times higher,
three times higher, and so on. Extending the argument used to justify sin 7tx, Bernoulli argued
that the overtones could be represented as sin 27, sin 3nx, and so on. (In fact, if you vibrate the
ends of, say, a phone cord, you can see these vibrational modes yourself.) Bernoulli asserted
that the general vibration would be some combination of the fundamental tones and overtones,

aj sin(mx) + a; sin(27x) + a3 sin(3mx) + - - -

Other mathematicians of the time also used such series, including Leonhard Euler, who
came up with a method to find the coefficients a;.

In 1822 the French engineer Joseph Fourier published a treatise on heat transfer, looking at
situations like, what would be the temperature anywhere on a rectangular plate if one side
was held at a temperature of 100 degrees and the other three sides at 0°. Fourier used infinite
series of sines and cosines in his solutions, and tried to prove the controversial assertion that
any periodic function f(x) could be written as a sum

flx) = i[a,, cos(2nmx/T) + b, sin(2nnix/T)],
n=0

where T is the period. (Do you see why the sum of all these sines and cosines have period T?)
This surprising fact was proven in 1829 by Dirichlet, but such series continued to be called

Fourier series. Fourier series are now crucially important in most branches of mathematics

and physics, as they break complicated functions down into manageable sines and cosines.

Chapter 3 More Triangles page 24
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Chapter 3

More Triangles!

3.1 Triangle Laws

A How many non-congruent triangles ABC are there such that AC = ‘%, BC = 3, and
LACB = 30°7 Recall that by SAS congruency all triangles which satisfy the above
criteria are congruent; thus, AB can only have one length. (Try drawing 2 non-congn:lent
triangles which satisfy the above specifications!) At left is the described triangle. Since

c there is only one possible value of AB, we should be able to find it, but how?
Draw a circle with center A and AC as the radius. Let F be the point E D
where side BC (extended if necessary) meets the circle. Since ACFD is
right (why?), CF = CDcos30° = 4 V3, so point B must be on segment CF G
(since CB < CF) and hence is inside the circle. We continue the sides of
the triangle to meet the circle at the points shown. Applying the Power of
a Point Theorem to point B, we have (BG)(BE) = (BF)(BC). E
Now we relate these lengths to sides and angles of our original AABC.
First we have AG = AC = AE = b as radii of the circle, so BE = AE — AB = C
AC — AB = b — ¢. Furthermore, we find BG=BA+ AG=BA+AC=c+b
and BF = CF - BC = CD cos C—a = 2bcos C—a, where we have used right triangle FCD to determine
CF = CDcos C = 2bcos C. Putting these expressions into our Power of a Point equation, we get

(BG)(BE) = (BF)(BC)
b+c)b-c) (2bcos C —a)(a)
p? -2 —a% + 2ab cos C,

or the more common
2 =a?+b%-2abcosC

This is called the law of cosines and can always be used to determine the third side of a triangle
when given two sides (@ and b) and the angle included between them (£C).

&

EXAMPLE 3-1 Use the law of cosines to find the answer to our introductory example.

Solution: Applying the law directly, we have
AB? = 32 4 42 — 2(3)(4)(cos 30°),

4 24 »
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so AB = /25 -123.
EXAMPLE 3-2 Use the law of cosines to find ZBifa =5,b = V21, and ¢ = 4 in AABC.

Solution: Using the law of cosines, we have

B_bz—az—cz_l
c0sB=———=75.

Thus, /B = 60°. Hence, we can find any angle of a triangle if given the three sides of the triangle.

EXERCISE 3-1 In our proof of the law of cosines, point B was inside the circle centered at A with
radius AC. Complete the proof of the law of cosines by addressing the cases in which B is on the
circle and outside the circle.

In any field involving geometry, such as land surveying or architecture, the law of cosines is a
necessity in determining lengths and angles. However, the law of cosines is sometimes not enough.
For example, suppose we are given two angles /A and /B and the side ¢ included between them.
The law of cosines alone fails here, because we don’t have two sides and an included angle.

B,/ N\A To attack this new problem we draw the circumcircle of our triangle and add

‘v diameter AE as shown. Since Z/AEB and /C are inscribed angles which subtend the
} same arc, they are equal. Hence, we have

LG

C B sin AR

AE = 2R’

where R is the circumradius of AABC. This can be rewritten as 2R = ¢/ sin C. This relationship must
also hold for the other two sides of the triangle as well, since there is nothing special about side AB.
(Note this use of symmetry; it is a useful simplification technique.) Writing this expression for each

side we get the law of sines:
a b c

sinA _sinB _ sinC
Given two angles and one side of any triangle, we can determine the remaining sides using the law

=2R.

of sines.

EXAMPLE 3-3 Find AB and BC if £C = 45°, /B = 30°, and AC = 6.

Solution: From the law of sines,

AC _ AB _ BC
sinB _ sinC  sinA’

From the given information, the first fraction equals 12. Hence, AB = 12sinC = 6 V2, ¢A =
180° — 45° — 30° = 105°, and

BC = 12sin A = 12sin 105° = 12sin(60° + 45°) = 3 Y6 + 3 V2.

EXERCISE 3-2 What is the circumradius of the triangle in the prior example?
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\ EXERCISE 3-3 Complete the proof of the law of sines by showing that a/sinA = 2R when /A is
obtuse and when /A is right.

EXAMPLE 3-4 Given ZA = 75°, AB = 4, and AC = 26, find ¢B, £C, and BC.

Solution: First we use the law of cosines to find

BC?

AB? + AC? - 2(AB)(AC) cos A
16+ 24 — 2(4)2 VB)[(V6 — V2)/4] = 16 + 83,

s0BC = /16 +8+3 = 2/4+23 = 2(1 + V3) = 2 + 2 V3. We can use either the law of sines.or
the law of cosines to find the remaining angles. The law of sines is much easier to use, so we write
BC/sinA = AB/sinC, and

_ABsinA _ 4 V6+V2_ V6+VZ_ V2

T BC 24243 4 2+2V3 2

Hence £C = 45° (why not 135°?), and ¢B = 180° — 75° — 45° = 60°.

sinC

These examples should have given you a grasp of how and why the law of sines and the law of
cosines are used in basic problems and in many fields. In problem solving, the law of cosines is used
in problems involving squares of sides (for obvious reasons). These problems are usually pretty easy
to spot, as expressions such as (¢? — a? — b?)/(~2ab) are hard to miss. Make sure you recognize this
expression as cos C! The use of the law of cosines in a problem can often get very algebraic. Try not
to resort to the law of cosines immediately in problems besides those already discussed; chances are
there is a more elegant approach.

The law of sines is much less complicated algebraically than the law of cosines and hence
can be used creatively in a broader range of problems. Problems involving sines of angles and
the circumradius of a triangle are often ripe for the use of the law of sines. The presence of the
circumradius or a/sin A terms is often a giveaway that the law of sines will be useful. The law
of sines is also useful when circles are present; equal inscribed angles allow us to make clever
manipulations like those in the proof of the law of sines.

\ EXAMPLE 3-5 Prove the law of tangents, which states that in triangle ABC witha = BCand b = AC,

a—b_tan‘%
a+b tan’%'

Proof: First we write the latter fraction in terms of sines and cosines:

s _sin(58)cos (1)
tan42  sin (4%2) cos (458)

Recalling our expressions for the sum and difference of sines from page 20, we recognize the
numerator as (sin A — sin B)/2 and the denominator as (sin A + sin B)/2, so

tan472  sinA —sinB
tan48 ~ sinA +sinB’
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We're clearly very close now. We need a way to relate the sines to the sides 2 and b; looks like a good
place for the law of sines. Since sin A = 4/2R and sin B = b/2R, we have

tan438  2/2R—-b/2R _a-b

tan4t8 ~ a/2R+b/2R ~ a+b’

EXERCISE 3-4 Use the law of sines to show that in AABC, ZA > /B if and only if BC > AC.

EXAMPLE 3-6 Use the law of cosines to justify the statement that if 4, b, and c are the sides of
triangle AABC and a < b < c, then AABC is acute if a? + b > ¢ and obtuse if a? + b < c.

Solution: From the law of cosines,
2 — g% - b
-2ab
If ¢ < a? + b?, then the numerator of the right side is negative, so cos C is positive and £C is acute.
Similarly, if ¢ > 4% + b, cos C is negative and /C is obtuse.

EXERCISE 3-5 In AABC, let D be a point on BC such that AD bisects /A. If AD = 6, BD = 4, and
DC = 3, then find AB. (MA© 1991)

cosC =

3.2 Areas, Areas, Areas

In the first volume we investigated three methods of finding the area of AABC, namely

[ABC] = a?h,, = a?bsinC =rs,
where r is the inradius, s the semiperimeter, and h, the altitude to side BC. There are far more
formulas for the area of a triangle than are useful to remember; in this section we will explore a few
more useful methods.

If we are told the three side lengths of a triangle, we can draw the triangle in only one way. By
this we mean that all triangles we draw with these three side lengths will be exactly alike (by SSS
congruence). Hence, we should be able to find the area of a triangle from just its three sides, but
how? Our three formulas all involve either angles or other lengths. Hence, we look for a way to
modify one formula to be in terms of only the sides of a triangle.

Since we know how to relate the angles of a triangle to the sides, we'll use [ABC] = %ab sinC. The
law of sines isn’t directly useful because it introduces the circumradius, a length we don’t know. The
law of cosines has only the triangle side lengths, so we'll try thatby writing sinC = V1 = cos2 C. From
the law of cosines and lots of algebra (mostly recognizing perfect squares and factoring differences
of squares), we have

[ABC] = & V1 - cos?C

2
_ ab - (@ -2 -2y
T2 402h2
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V(@a2b? — (2 — a2 - b?)2) /16

V(2ab - 2 + a? + b2)(2ab + ¢ — a% — b?)/16
Vi@ +b)?2 -l - (- b?)/16
V@a+b-c)a+b+c)a-b+c)(-a+b+c)/16

Vs(s—a)(s—b)(s—c),

where s is the semiperimeter of the triangle. The last step can be seen by noting that (a+b-c)/2=
(a+b+c—2c)/2 = s —c. This formula for the area of a triangle is commonly called Heron'’s formula.

EXAMPLE 3-7 Find the area of the incircle of a triangle with side lengths 13, 14, and 15.

Solution: The only relation we know so far involving the inradius of AABC is [ABC] = 7s.
We do know s = (13 + 14 + 15)/2 = 21, so if we find [ABC], we can find r. Since we also know

[ABC] = /s(s —a)(s — b)(s — c), we can find r from rs = /s(s — a)(s — b)(s — ¢), or

e /(s—a)(s—b)(s—c)'
s

We thus find r = 4, and the desired area is 167.

What if we used the law of sines to evaluate the area? Writing sin C = ¢/2R, we find

ab . abc
[ABC] = ? sinC = 4—R',
which is another very important relation.

As we saw in the previous example, the importance of these area formulas is not only in finding
the area of a triangle, but they also can be used to relate various important triangle lengths and angles.
In the following examples, you will have some practice with such formulas and manipulations.
Among these problems and those at the end of the chapter you will see many more formulas for the
area of a triangle and for various lengths and angles. Don’t memorize them all; learn how they are

derived.

EXAMPLE 3-8 Find the circumradius of a triangle whose sides are 13, 14, and 15.

Solution: In the previous example we saw that the inradius of such a triangle is 4. Since
rs = [ABC] = abc/4R, we have
R = abc/4rs = 65/8.
EXAMPLE 3-9 Given two angles and side a of a triangle, how would you find the area of the triangle
without determining any more side lengths?

Solution: Notice that it doesn’t matter which two angles we know, as we can determine the
third from the two given. Starting from the formula [ABC] = (ab/2) sin C, we can express b in terms
of a from the law of sines, or b = (asin B)/ sin 4, so
a%sin BsinC

2sinA
After finding the third angle from the two given we can use this expression to find the area.

[ABC] =
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EXERCISE 3-6 Show that [ABC] = 2R?sin A sin Bsin C.

Once again, these formulas aren’t always most important for the determination of areas. You
will see them again in our discussion of geometric inequalities (page 165) and you will often use
them as intermediate steps to solutions. The information given in a problem usually indicates which
methods are useful: if we are given the sides of a triangle, Heron’s formula is appropriate; given
two sides and the angle between them, we use (ab/2) sin C; for problems involving altitudes, inradii,
or circumradii, we use the corresponding methods. Finally, problems involving perimeter often call
for [ABC] = rs, and keep an eye out for the product abc and remember that it equals 4R[ABC].

3.3 More Important Lines

A segment drawn from a vertex of a triangle to the opposite side is called a cevian. In the first
volume we discussed a few important cevians, namely angle bisectors, medians, and altitudes. In
this section we will discuss methods of finding the lengths of these cevians.

Altitudes are the easiest, because we can use the area of a triangle to find the altitude from
[ABC] = ah,/2. Since we have many ways to find the area, we have many ways to find the altitude.

EXERCISE 3-7 Find the length of the shortest altitude of a triangle with side lengths 13, 14, and 15.

Angle bisectors and medians are significantly more difficult than altitudes; we will first reiterate
a method we mentioned in the first volume.

EXERCISE 3-8 Use the law of cosines to show that the sum of the squares of the diagonals of a
parallelogram equals the sum of the squares of the sides.

EXAMPLE 3-10 Use the previous exercise to find the length of median AD of AABC if AB = 5,
BC=7,and AC =8.

Solution: Extend median AD beyond D to E such that AD = DE. Since D, B
is the midpoint of both AE and BC, the diagonals of ABEC bisect each other. ‘
Thus, ABEC is a parallelogram, so we can apply the previous exercise:
AE? + BC? = AB? + BE? + EC? + AC?. A E

C
Since AC = BE, AE = 2(AD), and AB = EC, we have

4AD? + BC? = 2(AB? + AC?),

so AD = V2(Z5 + 64) — 49/2 = Y129/2.

EXERCISE 3-9 Use the previous example to find a general formula for the length of median AD of
AABC.
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We've now figured out medians. Before addressing angle bisectors, we will introduce and prove
Stewart’s Theorem.

In the figure, cevian AD with length d cuts BC (length a) into segments of A
length m and n as shown. Since cos ZADB = — cos ZADC (because the angles
are supplementary), we can relate all the given lengths using the law of cosines:

- — m2 - s | B
cossADB= = -m _ B -d-n = —cos LADC, m DA C
-2dm —2dn

or after multiplying by —2mnd,

Pn — d*n — nm? = —Pm + d*m + n’m

Rearranging this, we have c2n + bm = d2(m + n) + mn(m + n), or (since m + n = BC = a) the easier to
remember

&

cnc + bmb = dad + man.

You will usually only use Stewart’s Theorem to find the lengths of angle bisectors and medians.

To find the length of an angle bisector, we recall the Angle Bisector Theorem, which gives
n/m = b/c. We can use this relation and Stewart’s Theorem (and a bit of algebra) to find

a2
d2=bC<1—(b—+c)i).

If you don’t see how to get this, solve Stewart’s Theorem for d and use the Angle Bisector Theorem
in the form m/(m + n) = ¢/(b + c).

EXERCISE 3-10 Don't take our word for it; work through the algebra to obtain the above formula.
EXAMPLE 3-11 Show that if AD is an angle bisector of AABC, then

AD? + (BD)(CD) = (AB)(ACQ).

Solution: Dividing both sides of Stewart’s Theorem by a, withd = AD, m = BD, and n = CD, we
have

N\

d2+mn=m

From the Angle Bisector Theorem, bm = cn, so

_cnb+bme _be(m+n)
p =

d% + mn

be,
which is the desired result.

EXERCISE 3-11 Use Stewart’s Theorem to find an expression for the length of median AD in terms
of the sides of AABC. Does your formula agree with your earlier result for median AD?

EXAMPLE 3-12 Segment CX divides AB such that AX = 2BX = 4. If AC = 7 and BC =5, find CX.

Solution: Applying Stewart’s Theorem, we have
2(6)(4) + 6 CX? = 5(4)(5) + 7(2)(7),
soCX =5.
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4 The most important lesson to learn from Stewart’s Theorem is the method

of using the law of cosines on two equal angles or two supplementary angles.

For example, if AD is an angle bisector in AABC, we could use the law of

C B cosines to determine cos ZBAD and cos ZCAD and set these equal. This will
D achieve the same result as cos ZADC = —cos ZADB (Stewart’s Theorem).

Problems to Solve for Chapter 3

36. Is a triangle whose side lengths are in the ratio 6 : 8 : 9 acute, right, or obtuse? (AHSME 1952)

37. Find the length of the altitude to the 14 inch side of a triangle whose two other sides have lengths
of 13 inches and 15 inches. (MA® 1990)

38. In AADC, angle bisector DB is drawn. If AB = 3, AD = 6, and CD = 8, find BD. (MA® 1987)

39. If the sides of a triangle are in the ratio 4 : 6 : 8, then find the cosine of the smallest angle. (MA©
1991)

40. Triangle ABC is such that AB = 4 and AC = 8. If M is the midpoint of BC and AM = 3, what is
the length of BC? (AHSME 1975)

41. Use the law of sines to prove the Angle Bisector Theorem.
42. Find tan C, where C is the angle opposite side c of a triangle whose side lengths a, b, and c satisfy

a2+ +c
a+b+c
(MA® 1991)

43. Point O is the center of the circle circumscribed about isosceles AABC. If AB = AC = 7 and
BC =2, find AO. (Mandelbrot #3)

44. Prove that if the sides of trapezoid ABCD (AB || CD) satisfy the condition AC2+BD? = (AB+CD)?,
then ABCD is orthodiagonal. (M&IQ 1991)

a2+ +c

sin® A + sin® B + sin® C

. A _ [(s=b)(s—¢)
sma =y be )

47. Use the last problem to find a similar expression for cos(A/2) without using the law of cosines.
48. Show that

45.In AABC,a>b>c. If

=7, compute the maximum value of a. (ARML 1984)

46. Show that in AABC,

A B C
ABC] = 1% cot = cot — cot =
[ABC] cot > cot ) cot >
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49. Points A, B, C, and D are on a circle of diameter 1, and X is on diameter AD.

If BX = CX and 3/BAC = /BXC = 36°, then find AX in terms of trigonometric B
functions of acute angles. (AHSME 1993) A D
50. Show that if AD is a median of triangle ABC, then =
4AD? = AB? + AC? + 2(AB)(AC) cos BAC.
A 51. The magnitudes of the sides of AABC are a = BC, b = AC, and ¢ = AB,
with ¢ < b < a. Through interior point P and the vertices A, B, C, lines are
Z Y drawn meeting the opposite sides at X, Y, and Z, respectively. Prove that

'\ AX +BY + CZ < 2a + b. (AHSME 1964)

X 52. In AABC we have A = 60°, /B = 40°, and £C = 80°. If O is the center of
the circumcircle of AABC and the radius of the circle O is 1, find the radius of
the circumcircle of ABOC. (Mandelbrot #1)

53. Let ABC be a triangle with sides of lengths g, b, and c. Let the bisector of the angle C cut AB at D.
Prove that the length of CD is
2abcos §

a+b

(Canada 1969)

54. In triangle ABC, CD is the bisector of angle C, with D on AB. If cos(C/2) = 1/3 and CD = 6,
compute % + % (ARML 1986)

S 4 55. In AABC in the adjoining figure, AD and AE trisect ZBAC. The lengths of
NES BD, DE, and EC are 2, 3, and 6, respectively. Find the length of the shortest
side of AABC. (AHSME 1981)
B (&

D E
56. Triangle ABC is reflected in its median AM as shown. If AE = 6, EC = 12,

BD =10,and AB =k \3, compute k. (ARML 1987)

/7

57. Prove that if @,f,y > 0 and a + f +y = 7, then sin2a + sin 26 + sin2y =
4sina sin Bsiny. (M&IQ 2)

Chapter 4 Cyclic Quadrilaterals page 33
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Chapter 4
Cyclic Quadrilaterals

4.1 Properties of Cyclic Quadrilaterals

Unlike triangles, not all quadrilaterals can be inscribed in a circle. Tl:nosc which' can be are called
cyclic quadrilaterals. Such quadrilaterals have the following two special properties.
D

» The sum of the opposite angles in a cyclic quadrilateral is always 180°. Thus, C
LA+ (C=(B+¢(D=180°
To prove this, we note that angles A and C are inscribed angles, so B

BCD BAD _ BCD +BAD _ 360°
> T2 ST 2 T2

LA+ (C=

> When we draw the diagonals of a cyclic quadrilateral, we form four pairs of equal

angles like the pair shown below.
D These angles are equal because they are inscribed angles which subtend the same

arc. We have such a pair of equal angles for each side of the quadrilateral:

LABD = (tACD LACB = tADB

(BAC = (BDC LCBD = (CAD

4.2 Finding Cyclic Quadrilaterals

Knowing these two useful properties of cyclic quadrilaterals does you no good if you don’t know
how to recognize a cyclic quadrilateral. The two methods of spotting cyclic quadrilaterals are the
converses of the two properties discussed in the previous section.

If the sum of a pair of opposite angles of a quadrilateral is 180°, then the quadrilateral is cyclic.
(If one pair of opposite angles has sum 180° then the other pair must also because the sum of all four
angles is 360°)

Using the sum of opposite angles is the most common and easiest method to prove that a quadri-
lateral is cyclic. Given quadrilateral ABCD, to prove that /B + /D = 180° implies the quadrilateral

4 33 »
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is cyclic, we draw the circumcircle of AABC and show that if /B + /D = 1805, the circle must pass

through D as well. We do this by proving that D cannot be inside or outside the circle of ABC, so D
must be on the circumference.

In both of the diagrams below, we let

TST-"=6, .71_15\C=a, and zi?C:ﬁ.

Since AEC and ABC make up the whole circle, their sum is 360°.

For the case where D is inside the circle, E 'A
a B+60 B+a 0O 0 ] ' \
(B+/D=—-+"—= ~ =180° + —.
2t g g tg Pty F ‘ ”
Thus the sum is greater than 180° if D is inside the circle, violating the given fact /
that £B + /D = 180°. c
For the case of D being outside the circle, we do the same thing: D ‘ E
a B-60 a+p 6 , 6 PO A
L =E—t—=—r . _ = ——
B+ /D > + > ) ) 180 2 .
B
If D is outside the circle, /B + /D is less than 180°, which is again a contradiction. /
Since D cannot be outside or inside the circumcircle of AABC when /B + /D = Pal

180°, it must be on the circle.

C D C The other method for proving that four points are concyclic, meaning
\ : 7 M they all lie on the same circle, is as follows. If points C and D lie on the
3 B A \B

same side of segment AB such that ZACB = £ADB, then the four points
A, B,C, and D are concyclic. By ‘the same side’ we mean the points are as
D in the diagram on the left and not the right. We can prove this just like we

proved the prior method for showing a quadrilateral is cyclic. We draw
the circumcircle of AABC and show that if D is inside this circle, then ZADB > ZACB, a contradiction

to the two being equal. Similarly, if D is outside this circle, ZADB < £ACB, a contradiction. Thus,
point D is on the circumcircle of AABC. Since this proof is almost exactly like the one we did above,
we'll let you do it yourself.

Now that we know how to find cyclic quadrilaterals and how we can use them once we find them,
we must discuss when to look for them and how they are useful. Cyclic quadrilaterals are most useful
for proving that angles are supplementary or equal. In fact, usually problems
involving cyclic quadrilaterals involve first showing that a quadrilateral is cyclic,

A B
then using the equal angles formed by the diagonals and sides to show that a pair
of angles are equal.
Although cyclic quadrilaterals can be used to show that angles are supplemen-
tary, this is more commonly the way we show that a quadrilateral is cyclic. We b A C
then use the cyclic quadrilateral to show that angles are equal. We can use cyclic

quadrilaterals to show that angles are equal when the angles are situated as in the
top diagram at right. Angles A and B have sides which intersect at C and D, sowe C
can show that ZA = /B by proving that ABCD is a cyclic quadrilateral. Note that

we cannot use cyclic quadrilaterals in the bottom figure to show /A = /B because
A and B are on opposite sides of CD.
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In more difficult problems, using cyclic quadrilaterals is one of the most frequent methods of
proving two angles are equal. This is because it is easy to ‘hide’ a cyclic quadrilateral in a problem.
Of course, don't go into every problem looking for cyclic quadrilaterals; usually you should loqk
for similar and congruent triangles first. But there are certain types of problems where cyclic
quadrilaterals stick out. In problems involving right angles, cyclic quadrilaterals are often very
obvious because any quadrilateral with a pair of opposite right angles is cyclic.

EXAMPLE 4-1 Let H be the orthocenter of AABC and D and E be the feet of the altitudes from A
and B, respectively. Show that /DCH = /DEH.

C Proof: Since ZADC+ £BEC = 90°+90° = 180°, quadrilateral HECD is cyclic.
(We've drawn the circle to show this explicitly.) Since .DCH and /DEH are
E inscribed and these two angles subtend the same arc, they are equal.

D
A B

EXAMPLE 4-2 Consider cyclic quadrilateral ABCD with AB = 6, BC = 7, CD = 8,and AD = 9. Find
(AC)2. (MA® 1991)

Solution: Since ABCD is cyclic, £B = 180° — ¢D, so cosB = —cosD. Letting x = AC and
applying the law of cosines to both AABC and AADC, we have
ol B 2 -36-49 _x2—64—81 = ESD
-2(6)(7) -2(8)(9) :
Solving for x2, we find AC? = 2035/19. Remember that the law of cosines can be used in this manner
since the opposite angles of cyclic quadrilaterals are supplementary.
EXERCISE 4-1 In quadrilateral ABCD, we have AB = 20, BC = 15, CD = 7, DA = 24, and AC = 25.
Let ZACB = a and £ABD = B. What is tan(a + )? (Mandelbrot #2)
EXERCISE 4-2 Prove that if the diagonals of ABCD intersect at O and (AO)(CO) = (BO)(DO), then
ABCD is cyclic. This is the converse of part of the Power of a Point Theorem, and is occasionally
used to show that a quadrilateral is cyclic.

\I/

4.3 Ptolemy’s Theorem

Because of the many equal angles formed by the sides and diagonals
of a cyclic quadrilateral, we are able to find and investigate many similar
triangles.

For example, since ZADB = £LACB in the diagram at right, we can pick D B
a point E on BD such that ZDAE = £CAB to get ADAE ~ ACAB. Since

LBAE = (BAD — (DAE = (BAD - (CAB = (tDAC C

and (ABE = LACD, we further have AABE ~ AACD. From these two triangle similarities we have

BC _ED AB _AC
ACAaD ™ BE~ D
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Rearranging these, we have the equations

(BC)(AD)
(AB)(CD)

(AC)ED)
(AC)(BE).

We then add these to get
(AB)(CD) + (BC)(AD) = (AC)(ED + BE) = (AC)(BD).

This, finally, is Ptolemy’s Theorem, which states that in cyclic quadrilateral ABCD, with a = AB,
b=BC,c=CD,d = DA, and diagonals e and f, we have

=

ac + bd = ef.

The use of Ptolemy is generally quite straightforward once we have shown that a quadrilateral is
cyclic.

EXAMPLE 4-3 Find the diagonal length of an isosceles trapezoid with bases of lengths 8 and 20
and legs of length 10.

Solution: Since the opposite angles of an isosceles trapezoid are supplementary, the trape-
zoid is cyclic. Since the trapezoid is isosceles, its diagonals are equal. Letting these diagonals have
length x, we apply Ptolemy’s Theorem and find

x% = (8)(20) + (10)(10) = 260,

so x = 2 V65.

Problems to Solve for Chapter 4

58. Prove that a trapezoid is cyclic if and only if it is isosceles.

59. In cyclic quadrilateral ABCD with diagonals intersecting at E, we have AB =5, BC = 10, BE = 7,
and CD = 6. Find CE.

60. In the diagram, let ZADM = /ACD and ZABM = LACB. Prove that AB = AD. A
(Mandelbrot #2)

61. Quadrilateral ABCD with consecutive sides of 8, 15, and 12 is inscribed in a
circle with circumference 177t. Given that AC is a diameter of the circle, what is B D
the length of the other diagonal of the quadrilateral? (MA®© 1987)

62. Inscribed in a circle is a quadrilateral having sides of lengths 25, 39, 52, and c
60 taken consecutively. What is the diameter of this circle? (AHSME 1972)
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A A 63. Suppose an angle BAC is rotated about point O to a new angle B’A’C’
such that AB and A’B’ intersect at M and AC and A’C’ intersect at N, as
shown. Prove that A, A’, M, N, and O all lie on a circle. (Mandelbrot #3)

64. A parallelogram ABCD with an acute angle BAD is given. The bisector
of /BAD intersects CD at point L, and the line BC at point K. Let O be the
circumcenter of ALCK. Prove that the quadrilateral DBCO is inscribed in a
circle. (Bulgaria 1993)

65. Side AB of the square ABCD is also the hypotenuse of right triangle ABP (ABP lies outside ABCD).
Prove that the angle bisector of ZAPB bisects the area of ABCD. (M&IQ 1992)

66. Prove that the midpoints of the sides of a quadrilateral lie on a circle if and only if the quadrilateral
is orthodiagonal. (M&IQ 1991) :

67. In the figure, ABCD is a quadrilateral with right angles at A and C. Points B
E and F are on AC, and DE and BF are perpendicular to AC. If AE = 3, DE = 5,
and CE =7, then find BF. (AHSME 1990) G A
68. In quadrilateral ABCD with diagonals AC and BD intersecting at O, BO = 4, §’\
OD =6, A0 =8,0C = 3, and AB = 6. Find AD. (AHSME 1967)
D
69. Prove that if in ABCD we leta = AB, b= BC,c = CD, and d = DA, we have §\

[ABCDJ? = (s — a)(s — b)(s — ¢)(s — d) — abcd cos> (B 42- D) ;

where s is the semiperimeter of the quadrilateral. What does this expression, called Brahmagupta’s
formula, yield for a cyclic quadrilateral?

Chapter 5 Conics and Polar Coordinates page 38
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Chapter 5

Conics and Polar Coordinates

In Volume 1 we examined methods of graphing lines and circles. In this chapter we develop methods
of describing and graphing other curves as well as using polar coordinates to describe curves. Be
forewarned that while there are seemingly many formulas to be memorized in this chapter, if you
take the time to understand the forms of the conics and the derivations thereof, you will need no
memorization, only logic, to determine the formulas. Take the time to understand the proofs and
the lessons and intuition they offer.

5.1 Parabolas

We already know how to solve quadratic expressions like x2 + 2x + 4 = 0, but how do we graph the
quadratic y = x? + 2x + 4? The answer to this question is the parabola. Given a line / and a point P
in a plane, a parabola is the set of points S in the plane such that the length SP equals the distance
from S to I. The point P is called the focus and the line / is called the directrix.

Using this definition of a parabola, we can make the rough sketch shown, g
where [ is a horizontal line. The minimum point on the curve is called the
vertex, and we label it X = (1,k). If we let the distance from X to P be a, we b
have P = (I, k + a). Similarly,  is a below X (since X is equidistant from Pand l) 1 X
and thus can be described by y = k —a. (Remember, [ is a horizontal line.) If we choose any point
S = (x,y) on the parabola, we have SP = \/(x = )% + (y = k — a)? and the distance from S to ! is merely
y— (k—a) = y — k +a. Hence, from our definition of a parabola we have

Vx=h2+y-k-aR=y—k+a.

Squaring both sides and rearranging, we have

x=-h?+(y-k-0a? = (y-k+a)
@-h? = (y-k+a?-(y-k-a)?
(x=h? = [y-k+a-y+k+ally-k+a+y—k-a
(x-h? = [2a][2(y - k).

Dividing by 42 we have the general form of a parabola with a horizontal directrix:
=1 2
y—k= 4a(x—h) A

4 38 »
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Such parabolas always open either upward or downward (the one in this example opens upward).
Similarly, if the directrix is vertical, the equation

-1 2
x=h= -k
describes the parabola (which then points either to the right or the left). In this case, the vertex is

still (h, k), but now the focus is +a to the right of the vertex, or (i +4,k), and the directrix is a vertical
line —a from the vertex, or x = h —a.

EXERCISE 5-1 In the two general equations for the parabola above, what effect does the 1/44 term
have on the graph of the parabola? What does negative a mean? Large a?

EXERCISE 5-2 The axis of symmetry is the line through the focus and the vertex of a parabola. The
axis thus divides the parabola precisely in half. Find the equation of the axis of a parabola which
opens upward and that of a parabola which opens to the right.

EXAMPLE 5-1 Graph and find the vertex, focus, and directrix of the parabola

x=-2y% +12y - 15.

Solution: First we complete the square to get the parabola in one of our
general forms:

-2(y* - 6y) - 15
-2(y* - 6y +9) — 15.

X
x+(=2)(9)

Hence our parabola is described by x =3 = -2(y — 3)%. Our vertex then is

(h,k) = (3,3). To determine the focus and directrix, we find a by noting 1/4a = -2, soa = —1/8.
Hence, the directrix is x = 3 — (-1/8) = 25/8 (remember, the y term is squared, so the directrix is
vertical) and the focus is (3 — 1/8,3) = (23/8,3). To plot the parabola, we first plot the vertex, then
find a few more points on the parabola by selecting values for y and finding the corresponding x
values. We then plot the parabola as shown.

EXERCISE 5-3 Draw a line through the focus parallel to the directrix. Suppose this line intersects the
parabola at A and B. The latus rectum is the segment AB. Prove for our above described parabolas
that AB = |4a|. How can this fact be used to sketch parabolas easily?

EXERCISE 5-4 Why do you think the line / in our definition of a parabola is called the directrix?

EXERCISE 5-5 Find the focus, the vertex, the directrix, and the length of the latus rectum of the

parabola
y=x2/2+3x+4.

Now that we can find all the significant points and lines of a parabola, we should be able to find
the equation of a parabola given some of these points or lines. We do so by first determining the
direction of the parabola (right, left, up, or down), then using the given information to determine h,
k,and a.
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EXAMPLE 5-2 Find the equation of a parabola with focus (3,2) and vertex (3,4).

Solution: Since the vertex and focus lie on a vertical line (x = 3) and the vertex is above the
focus, the parabola points downward. Hence, we are dealing with the form y — k = (1/4a)(x - h)2.
From the vertex we know that i = 3 and k = 4 and we expect a to be negative (since the parabola
opens downward). We know the focus is always a away from the vertex. In this case, the focus is 2
units below the vertex, so a = 2. Hence, our parabola is y — 4 = —(1/8)(x — 3%

EXERCISE 5-6 Find the equation of a parabola with directrix x = 3/2 and focus (5/2,4).

EXAMPLE 5-3 A box with two dimensions of 10 feet and 4 feet is to be slid through a parabolic
arch which is 5 feet tall at the center and 6 feet wide at the base. If the side facing the ground is 4
feet by 10 feet, what is the largest the other dimension can be and still slide through the arch?

A Solution: Draw the segment AB from the top of the arch to the midpoint
X Y of the base as shown. If we let B be the origin, we can determine A = (0,5),
C = (3,0), and D = (-3,0), since the arch is 5 feet high and 6 feet wide. Hence,
D C _ thevertex of our parabola is (0, 5) and it passes through (3, 0). Since the parabola
W B Z points downward, we have y — 5 = (1/4a)x? as its equation. Using the point
(3,0), we have —5 = 9/4a, or 1/4a = -5/9. Hence, the equation of the parabola is

5
y—5-—§x2.

Now we draw the box WXYZ in the arch as shown. Since WZ = 4, point Z has coordinates (2, 0).
Point Y then has coordinates (2, z), where z is the desired third dimension. Since Y is on the parabola,
we have z — 5 = (-5/9)(2%). Hence z = 25/9 and our largest possible third dimension is 25/9 feet.
Make sure you understand this problem. Variations of it using elliptical and hyperbolic arches
(figures which are discussed in the next few sections) are very common. Don’t let them trip you up!

5.2 Ellipses

The general equation for a circle is
(x—h?+(y-k?=R%
Dividing by R?, we can write this as

(x=h? (y—k?
kR e b

In our discussion of distortion in Volume 1, we noted that we can stretch a ‘
circle to form an ellipse. Namely, we could stretch the radius in the x direction O
so that it differs from that in the y direction. The resulting curve is at right. We
could then associate two radii, 2 and b, with our curve and write it as

(=B  (y—k?

+
a? b2

=1
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From our diagram, we see that we have two different ‘diameters’ in the x and y direction. These
have length 2z and 2b, respectively. These are called the major axis and the minor axis of the ellipse,
where the major axis is the longer of the two.

EXERCISE 5-7 What if a = b above? Do you see why circles are ellipses?

Taking two points F; and F,, we can define an ellipse as the set of L

points Z such that ZF, + ZF, has some constant value. We call F; and / x
F; the foci of the ellipse. To see that this new definition of an ellipse , (" E B
satisfies our equation form, we apply the distance formula. First we KJ
draw the axes of the ellipse and note that CD = 2b and AB = 24. Now

we can find the constant sum ZF; + ZF,. Letting Z be A we have

D

ZF, + ZF, = AF; + AF, = B, + AF, = AB = 21,

where we note that AF; = BF,. (Why?) Hence our constant sum is 24, or the length of the major axis.
Since F1C = CF3 and F,C + CF; = 24, from right triangle CEF; we have

22 = 2CF; = 2\/CE? + EF? = 2,/b2 + EF}.

If we let ¢ = EF; be the distance from each focus to the center, we square a = /b? + EF? to find
¢ = a® - b%. (Why are the foci equidistant from the center?) Now we are ready to apply our constant
sum principle to find the equation of an ellipse. We let the center of the ellipse be the origin, so that
F1 = (=, 0) and F; = (c,0). Taking a general point Z = (x, y) on the ellipse, we have

20 =ZF; + ZFy = \/(x + ¢ + 2 + \/(x = 02 + 2.

We move one radical to the other side of the equation and square, so

(Za— V(x +c)? +yZ)2 (\/(x—c)2 +y2)2
40 —da\J(x+ P+ P2+ (x+ P +y? = (x—c)?+iP

42 —da\J(x+ R+ P+ 2 +2xc+ P+ = P -c+E + R

Again we rearrange the equation to isolate the square root. Then we divide by 4 and square both
sides of the resulting equation, yielding

(—a Vi(x+c)?+ y2)2 = (-a%-xc)?
Alx+c?+7] = a*+2axc + 232
a%x® + 2a%xc + a** + a2y2 = o'+ 22%xc + 22

Simplifying where possible and applying the relation ¢? = a% — b2, we have

a*x* + a’c? + a?y? at + X232
a*xt + az(a2 - bz) + azy2 at + xz(a2 - bz).
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Putting all terms involving x and y on the left and the constants on the right we find

B2 + a2y? = P

or 2 2
y _
{1_2 + EE =1.
The simple translation from (x, y) to (x —h, y — k) gives us the equation for an ellipse with center (h, k)
rather than (0,0), or

(x-h?  (y-k?* _
2t a =k
For this ellipse, the foci are (h + ¢, k) since they are ¢ to the right and ¢ to the left of the center.

We measure the amount an ellipse is stretched away from a circle by its eccentricity, which is
¢/a. Finally, the area enclosed in an ellipse is abnt, which is proven on page 242.

EXAMPLE 54 What happens to our ellipse equation if the major axis is parallel to the y axis rather
than the x axis as above?

Solution: Again we let the major axis have length 24 and the minor axis length 2b, so that
through the same discussion as above, the equation of the ellipse is

x=h?  (y-k?_
T+T =:1.

The foci are now ¢ above and ¢ below the center (at (h, k + c)) and c still equals Va2 — b2.
EXERCISE 5-8 Why is the quantity c/a called the eccentricity?

parallel to the coordinate axes. WARNING: In describing an ellipse, we associate the letter a with
the larger of the ‘radii’ in the x and y directions. Always make sure your value of a is greater than
that of b; otherwise, your value of ¢ = Va2 — b2 will be nonsense. Furthermore, make sure you know
which direction the major axis points. This will help you determine where the foci are.

lrr Now we have a way to describe all important points and lengths of an ellipse whose axes are

EXAMPLE 5-5 Graph and find the center, foci, area, and lengths of the axes of the ellipse given by
9x2 — 36x + 4y — 24y + 36 = 0.

Solution: We attack this just as we did parabolas that weren’t written in the nice general form;

we complete the square:
9(x? - 4x) + 4(y* - 6y) = —-36.

To make perfect squares, we add (~4/2)% = 4 inside the x parentheses and (-6/2)? = 9 inside the y
parentheses. Hence, we have

9(x? — 4x +4) + 4(y* - 6y +9)
9(x —2)% + 4(y - 3)

-36 +9(4) + 4(9)
36.
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Dividing by 36, we get our form for the ellipse,

(=27, =3 _
ekt
Hence the center is (2,3). Since the number under the y is greater than that under the x, the ma]:or
axis is parallel to the y axis. From our equation we have a = V9 = 3and b = V4 = 2. Thus, the major
and minor axes have lengths 6 and 4, respectively.
From a and b we find that the area is 6r and ¢ = V9 — 4 = V5. Since the major axis
is parallel to the y axis, the foci are then found by adding and subtracting c from the y
coordinate of the center, or (2,3 + ¥5). To graph the ellipse, we locate the endpoints of
the axes. The major axis endpoints are 3 above and below the center (since the major
axis has length 6) and thus are (2,6) and (2,0). Similarly the endpoints of the minor
axis are (0,3) and (4, 3). Plotting these points, we can draw the ellipse as shown. X

EXAMPLE 5-6 What are a and b for the ellipse

4x-12  y-2°_,
9+8_1.

Solution: Neitheranor bis V9 = 3! Notice the 4 before the (x—1)?. We put this in the denominator
as

(x-12 (y-27_
974 +——8 =1

Our 2 and b values are then V8 = 2 V2 and V974 = 3/2, respectively.
EXERCISE 5-9 Find the center, foci, and length of the axes of the ellipse

3% +4y* - 6x + 8y +3 =0.

EXERCISE 5-10 What if I complete the square for a problem like the the previous exercise and find = 0>

(x-2?% (y+1)? _

- + = 0
as my equation of the ellipse? (Notice there is a 0 on the right, nota 1.) How many solutions (, y) are
there to this equation? What if I get a negative number on the right? These are cases of degenerate
ellipses, or ellipse equations with either no solution or only one solution.

EXERCISE 5-11 As with the parabola, we can define the latus recti of an ellipse as the segments
through the foci parallel to the minor axis with endpoints on the ellipse. Find the length of each of

these segments in terms of 2 and b.

Just as with parabolas, we are often asked to find the equation of an ellipse given certain
information about the ellipse. Again the first step is to determine which direction the ellipse points
(i.e. the direction of the major axis). We then use the given information to determine the center as

well as a and b.
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EXAMPLE5-7 Find the ellipse with major axis length 8, center (2,1), and one focus at (2,3).

Solution: Since the given focus is directly above the center, the major axis is pa:a}lel to the
y axis. From the information we can also deduce h = 2,k = 1, and a = 8/2 = 4. Since the given focus
is 2 away from the center, we have ¢ = 2. Thus, from ¢ = a2 — b2, we find b? = a? — ¢ = 12 and our
ellipse is

2 2 _9) =
(c=hP?  y-k?_x-27 =17
b2 a? 12 16
Make sure you see why the 12 is under (x — 2)? rather than (y — 1)*.
EXERCISE 5-12 Find the equation of the ellipse with foci at (3,1) and (5, 1) and minor axis with
length 4.

With the ability to find the equation of an ellipse given some information about it, we move on
to less obvious applications of ellipses.

EXAMPLE 5-8 To give my dog some space to run, I drive two stakes in my lawn 10 feet apart. I
tie the ends of a 30 foot rope to the stakes (one end to each stake) and loop my dog’s collar loosely
around the rope, so she is free to move along the rope. Over how many square feet is my dog free
to roam?

Solution: If my dog walks until the rope pulls taut, she will get to the boundary of her roaming
area. This boundary is an ellipse since the sum of the distances from any point on the boundary to
the stakes is the length of the rope, 30 feet. The stakes correspond to the foci and the rope to the
constant sum of distances. Hence, the major axis has length 30. If we let the stakes lie on the x axis
and the midpoint of the line connecting the stakes be the origin, the equation of the ellipse is (since
a=30/2=15):

i + ﬁ — 1

25
We then find b by noting that the distance from a focus to the center is ¢ = 5 since the stakes are
10 feet apart, so b = Va? —c2 = 10 V2. The area of the roaming region is the area of the ellipse, or
abm = 150mV2 square feet.

Keep an eye out for these slick applications of the constant sum of distances property of an ellipse
to problems.

5.3 Hyperbolas

Suppose we change the + in the general ellipse equation to a —, resulting in
(x=h? (y-k? _
a2 22

The graph of this equation is called a hyperbola. As you may have guessed, with each hyperbola we
can associate a pair of foci Fy and F; so that the hyperbola is the set of all points S where |F;S — F,S|

1.
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has some constant value. We can slug through the same exact algebra as we did with the ellipse to
show the equivalence of the constant difference condition to the above equation. If you don’t trust
us, try it yourself. Find this common difference of distances and use the fact that ¢ = 4 + b? (where
¢ is the distance from the focus to the center).

If you find a bunch of points on the hyperbola, you will eventually find a curve like the bold
curve shown below. The center O has coordinates (4, k), just like the ellipse. Points I and | are the
foci and have coordinates (k + c, k) since they are c to the right and left of the center. The points C
and G are the vertices. They have the same y coordinate as the center, so letting y = k in the equation
for a hyperbola, we have (x — h)2/a? = 1, s0 x = h + a and the vertices are (h £ a,k).

The segment CG is called the transverse axis, and like the major axis of an ellipse it has length
2a. Similar to the minor axis we define the conjugate axis as the segment with endpoints (#, k + b).

Suppose we sketch the rectangle, as we have in dashed lines, with center O and sides equal in
length to our two axes. The lines [ and m which are the extensions of the diagonals of this rectangle
are called the asymptotes of the hyperbola. These are lines which the curve approaches but never
actually meets. We can find the equation of line I by noting that it passes through the center O = (h, k)
and has slope HG/OG = b/a. Hence, the equation of line /is y—k = (b/a)(x—h). Similarly, the equation
for line m is y — k = (=b/a)(x — h). As the following example will show you, using the asymptotes
helps graph the hyperbola.

Please do not memorize all of these formulas; understand them instead.

EXERCISE 5-13 Why are the lines y —k = ii—’(x — h) asymptotes of the above hyperbola? What
happens in our hyperbola equation if we let y — k = +2(x — h)?

EXAMPLE5-9 Find the asymptotes, vertices, center, foci, and lengths of the axes of 9x2 —4y? + 18x +
16y — 43 = 0 and graph the hyperbola.

Solution: Grouping our x and y terms we have 9(x* + 2x) - 4(y? — 4y) = 43. Completing
the square then dividing by 36 we get

(x+1? (=22 _

2 9 1

(Always make sure you have positive 1 on the right.) The center is (—1,2), and we have 2 = 2 and
b = 3. Hence, the transverse axis has length 2(2) = 4, the conjugate axis has length 6, and the vertices

are (-3,2) and (1,2). Since ¢ = Va2 + b2 = V13, the foci of the hyperbola are (-1 + V13, 2). Finally, the
asymptotes are y — 2 = £3(x + 1).
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To graph the hyperbola, we plot its center and vertices. We then draw
our asymptotes, which we can do most easily by sketching the rectangle.
with center (-1, 2) and sides of length 22 and 2b as in our introduction. The
lines through the opposite corners of the rectangle are the shown asymp-
totes. Now we can draw the curve through the vertices approaching the
lines asymptotically as shown.

<D€ EXERCISE 5-14 Find the center, vertices, foci, asymptotes, and the lengths of the axes of the
hyperbola

(y-Kk?* -h?*_
P =%

Note that with a hyperbola we always associate a with the positive term rather than the one with
the larger denominator.

EXERCISE 5-15 We can define the latus recti of a hyperbola as the segments through the foci parallel
to the conjugate axis with endpoints on the hyperbola. We can also define the eccentricity as we did
for the ellipse, c/a. Find the length of the latus recti of a hyperbola.

EXAMPLE 5-10 What if completing the square for the hyperbola results in (x—1)2/4 - (y+2)2/9 = 0,
rather than equalling 1 like usual?

Solution: This is a degenerate hyperbola. We can write the equation as (x — 1)2/4 = (y + 2)2/9.
Taking the square root of both sides, we find

(x=-1)/2==x(y+2)/3,

so the degenerate hyperbola is just a pair of lines.

the graph we find the curve shown. This looks very much like a hyperbola, and
it is! The coordinate axes are the asymptotes and the origin is the center. We
can find the vertices of the hyperbola by noting that x = y at the vertex. (Why?)

Hence the vertices are ( V6, V6) and (- V6, — \/6). Similar to this example, any \

Consider the graph of the curve xy = 6. Graphing several of the points on \

curve of the form xy = c is a hyperbola.

EXERCISE 5-16 Why are the coordinate axes asymptotes of the hyperbola xy = 6?

Once again, we can determine the equation of a hyperbola given various information about the
hyperbola.

EXERCISE 5-17 Find the equation of a hyperbola with vertices (-2, -1 + 2 ¥2) and conjugate axis of
length 4.
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Now that we’ve finished introducing parabolas, ellipses, and hyperbolas, we can discuss why
we call them conic sections. Take a pair of congruent cones and hold them tip to tip so they ‘have the
same vertex and same axis but open in opposite directions. Consider the various cross-sections that
occur when you cut the resulting solid with a plane. Cutting completely through one cone fgrms an
ellipse. Cutting with a plane parallel to the axis will form a hyperbola, and a plane intersecting one
cone but not the other (but not passing all the way through the first cone) forms a parabola.

5.4 Polar Coordinates Revisited

As we saw in the first volume, we can identify any point P in the plane ,
by its distance from the origin (OP) and the angle 6 which OP forms with the y
positive x axis. Calling the distance from the point to the origin 7, we relate the Ah
polar point P = (r, 6) to the rectangular coordinate point (¥, y) by x = rcos 6 and
y =rsin 6. Hence, we have

J(2+yZ =1 cos? 6 +Psin20 =1,
and we relate the angle 6 to x and y by
y _ sinf

x cos@’
or 6 = tan"! £. WARNING: Make sure when determining 6 that it properly corresponds to the ‘
quadrant in which (x, y) lies.

EXAMPLE 5-11 Convert the rectangular point (3,-3) to polar coordinates and the polar point
(6,30°) to rectangular coordinates.

Solution: For the point (3,-3), we have r = \/x> +y2 = V18 = 3v2. We find the angle as
6 = tan~!(~1). Since (3, —3) is in the fourth quadrant, 6 = 315°. The point (3, —3) in polar coordinates
is then (3¥2,315°). Notice that we could use 315° + n(360°) for any n as the angle to determine the
point in polar coordinates as well.

For the polar point (6,30°), we have x = 6c0s30° =3 V3and y = 6sin30° = 3. Our point thus is
(3v3,3).

EXERCISE 5-18 Express (6,6 V3)in polar coordinates and (-2,405°) in rectangular coordinates.

Polar coordinates are often useful in describing curves. For example, the equationr = 3 represents
a circle with center (0, 0) and radius 3. Using the expressions x = 7 cos 6 and y = rsin 6, we can easily
turn any curve in rectangular coordinates into a polar equation.

EXAMPLE 5-12 Express the equation 2 -y*=9in polar coordinates.

Solution: Using x = rcos6 and y = rsin®, we have x? — y2 = r*(cos? 8 — sin?6) = r?cos26.
Hence, our polar form is r? cos 26 = 9.

EXERCISE 5-19 Express 6xy = 8 in polar coordinates.

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

48 » CHAPTER 5. CONICS AND POLAR COORDINATES

Going from polar coordinates to rectangular is generally a little bit tougher. To do so, we replace
any 72 with x2 + 2, r cos 6 with x, and rsin 6 with y. Sometimes we have to manipulate the equation
a bit first, as you will see.

EXAMPLE 5-13 Writer = ﬁ in rectangular coordinates.

Solution: First we multiply by 3 — cos 6, yielding
3r—rcosf =5.

Since rcos 6 = x, we have 3r—x = 5. Isolating the 7 we find 3r =5+ x. Squaring this (to get 7 on the
left) yields 972 = 25 + 10x + x2. Since r? = 22 + y2, we have 9(x? + 1) = 25 + 10x + x*, or

8x% + 9y — 10x = 25.

You should now be able to recognize this as an ellipse.
EXAMPLE 5-14 Identify the curve r = 3 cos 0.

Solution: To identify a curve in polar coordinates, it is often best to convert the equation to
rectangular coordinates and name the resulting curve. For this equation, we multiply by r to force
an 72 on one side and r cos 8 on the other, namely 72 = 3r cos 6. Hence, x? + ¥ = 3x and our curve is
a circle.

EXERCISE 5-20 Express r = 4sec and r = 3 sin 6 in rectangular coordinates.

EXERCISE 5-21 How would you express vertical or horizontal lines in polar coordinates? How
about a line through the origin?

EXERCISE 5-22 Describe as specifically as possible the class of curves described by r = asin 6 +
bcos 6.

Finally, for you trivia buffs, there are a few more families of curves which have simple polar
forms.
A limagon has the one of the forms:

r=a+bsin@ r=a+bcosO
r=a-bsin0 r=a-—bcos6.

Try choosing some pairs (2,b) (where a,b > 0) and sketching the resulting graphs by choosing
different values for 6, then computing r.

If a limagon has a/b < 1, it will have a loop. If a/b = 1, the curve, which is shown

at left, is called a cardioid. If 1 < a/b < 2, the limagon is ‘dimpled,” and otherwise, it

is ‘convex.’
Curves of the form 2 = +a%c0s26 or 2 = +4?sin20 are called lemniscates,
which look like infinity symbols.

The curve r = a6, where the radius increases with the angle, is called the spiral
of Archimedes. Graph it and see why.
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Finally, » = asinn6 and r = a cos nf represent roses. Shown is a graph with n = 5,
which has 5 ‘petals.” Try choosing other values of n and plotting the results. Can you
develop a rule for the number of petals in a rose?
As we initially stated, these curves aren’t terribly useful for problem solving outside
of trivial pursuits, however through using computer graphics you may be able to generate quite
artistic results based on these simple polar forms.

5.5 That Pesky xy Term

A general conic has the form Ax? + Bxy + Cy2 + Dx + Ey + F = 0. In previous sections, the only time '§’\
we have seen an xy term is when we discussed hyperbolas of the form xy = ¢ for some constant
c. Otherwise, we have avoided xy as much as possible because conics without xy terms are easy to
analyze. Those with an xy term have axes which are no longer parallel to the coordinate axes and
these are much more difficult to resolve. We call these conics oblique.

Now that we’ve mastered polar coordinates we can analyze oblique conics by rotating them so
that their axes are parallel to the coordinate axes. But how do we perform the rotation?

Rather than rotate the conic, we rotate the coordinate axes to be y Y
parallel to the axes of the conic. In the diagram is the rotation of the
coordinate axes through an angle a counterclockwise about the origin.
Point P, which originally has coordinates (x, y) before rotation is at (x’, y’) 8 o
with respect to our new axes x’ and y’. Letting the angle OP forms with a
the positive x’ axis be B, we can relate the two pairs of rectangular 0
coordinates of P to @ and B through polar coordinates (where r = OP) as

x=rcos(a+p) and y=rsin(a+p),

and
x' =rcosp and y =rsinp.

(Make sure you understand these.) Expanding our expressions for x and y and using the ones for x’

and y’ we find

x = rcosacosP—rsinasinf =x'cosa—y sina

y = rsinacosf+rcosasinf=x"sina+y cosa,
where we have used our expressions for x” and y’ to express (x, y) in terms of (x’, y’) and the angle
of rotation. '

EXERCISE 5-23 In our above rotation, find x’ and y’ in terms of x, y, and a.

Now we return to our conic Ax? + Bxy + Cy? + Dx + Ey + F = 0, where B # 0. Our problem now
is to rotate the axes through some angle a such that the resulting conic has no x’y’ term in (¥’, y’)
coordinates. Using the above equations for x and y in terms of x’, y’, and a, we have

A(¥ cosa -y’ sina)? + B(x' cosa — y’ sina)(x’ sina + ' cos @) + C(x' sina + ' cos a)?

+D(x' cosa — i’ sina) + E(x’ sina + y' cosa) + F = 0.
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Since we want to get rid of the x'y’ term, we only consider those terms which produce X'y’ terms.
Combining these terms and setting their sum equal to 0, we have

—2Ax"y cosasina + Bx'y/(cos® a — sin®a) + 2C¥'y/ cosasina = 0
X'y (C - A)(2cosasina) + BY'y/ (cos?a —sin*a) = 0
x'y'(C - A)(sin2a) + BxX'y/(cos2a) = 0.

Dividing by x'y’ and rearranging a bit, we find B cos 2a = (A~C) sin2a, so cot 2a = (A—C)/B. Hence,
a as given by cot2a = (A — C)/B is the angle through which we must rotate the axes to eliminate the
xy term of Ax? + Bxy + Cy? + Dx + Ey + F = 0.

EXAMPLE 5-15 Through what acute angle(s) can the conic 3x% + 4xy — 4y> — 6 = 0 be rotated in
order to remove the xy term?

Solution: From the above discussion, we have cot2a = 7/4 for the angle a through which
we must rotate the axes counterclockwise; hence, we must rotate the conic clockwise a to get rid of
the xy term. Thus, one such angle is a = (1/2) Cot™(7/4) clockwise. We can also rotate the conic
through an angle 90° — & counterclockwise to get rid of the xy term. The axis which becomes parallel

to the x axis under a rotation of a clockwise will be parallel to the y axis upon a rotation of 90° — a
counterclockwise. Make sure you see why!

How can we tell if the general conic Ax* + Bxy + Cy? + Dx + Ey + F = 0 is an ellipse, parabola,
or a hyperbola? We already know how if B = 0. The conic is a parabola if A or C is 0; it’s an ellipse
if AC is positive, and it’s a hyperbola if AC is negative. (Why?) If B # 0, we rotate the conic so that

there is no xy term, just as above. For those of you with a yen for algebra, use our rotation method
above to prove that if we rotate

Ax® +Bxy+Cy* +Dx+Ey+F=0

to
A+ BXy +C'y?+D'Y +E'y +F =0,

then B’2 — 4A’C’ = B? — 4AC, no matter what the angle of rotation is. This value, B2 — 4AC,
is called the discriminant of the conic. Suppose the rotated conic is such that B” = 0. Hence,
B2 — 4AC = B —4A’C’ = —4A’C’. Since our new conic has no xy term, it is an ellipse if A’C’ > 0, a
parabola if A’C’ = 0, or a hyperbola if A’C’ < 0. Thus, if B> - 4AC = —4A’C’ = 0, the original conic
is a parabola, if the discriminant is negative (so that A’C’ > 0), the conic is an ellipse, and if the
discriminant is positive, the conic is a hyperbola.

EXERCISE 5-24 Can every circle be described without an xy term?
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Problems to Solve for Chapter 5

70. Find the equation of a hyperbola with asymptotes y — 1 = :l:%(x —4) and one vertex at (6, 1).
71. A parabola y = ax? + bx + ¢ has vertex (4, 2). If (2,0) is on the parabola, then find abc. (AHSME 1986)

72. Find the radius of the smallest circle whose interior and boundary completely contain the two
circles with centers (0,0) and (24, 7) and radii 3, 4, respectively. (Mandelbrot #2)

73. A tiny bug starts at a point (x, y) on the graph of x?/9 + y?/4 = 1. It walks in a straight line to the
point (- V5,0), then in a straight line to (¥5,0), and then in a straight line to its initial point. How
far has the bug walked? (MA®6 1990)

74. If each of two intersecting lines intersects a hyperbola and neither line is tangent to the hyperbola,
then what are the possible numbers of places where the lines can intersect the hyperbola? (AHSME
1956)

75. Points A and B are selected on the graph of y = —x?/2 so that triangle ABO is equilateral, where
O is the origin. Find the length of one of the sides of AABO. (MATHCOUNTS 1991)

76. A parabolic arch has a span of 24 feet. Its height is 18 feet at a point 8 feet from the center of the
span. What is the height, in feet, of the arch? (MA® 1992)

77. If the line y = mx + 1 intersects the ellipse x2 + 4y? = 1 exactly once, then find m?2. (AHSME 1971)

78. Find the equation in rectangular coordinates of the curve whose polar equation is r = 2sec +
cos 6. (MAS 1987)

79. A circle has the same center as an ellipse and passes through the foci F; and F; of the ellipse. The
two curves intersect in four points. Let P be any point of intersection. If the major axis of the ellipse
has length 15 and the area of triangle PF F; is 26, compute the distance between the foci. (ARML 1984)

80. A point P lies in the same plane as a given square of side 1. Let the vertices of the square, taken
counterclockwise, be A, B, C, and D. Also, let the distances from P to A, B, and C, respectively, be u,
v, and w. What is the greatest distance that P can be from D if u? + v? = w?? (AHSME 1983)

;

81. An ellipse is drawn with major and minor axes of lengths 10 and 8 respectively. Using one focus
as the center, a circle is drawn that is tangent to the ellipse, with no part of the circle being outside
the ellipse. Compute the radius of the circle. (ARML 1986)

y

82. The points of intersection of xy = 12 and 2% +y? = 25 are joined in succession. What is the
resulting figure? (AHSME 1956)

83. A circle rests in the interior of the parabola with equation y = x2 so that it is tangent to the
parabola at two points. How much higher is the center of the circle than the points of tangency?
(Mandelbrot #2)

Chapter 6 Polynomials page 52
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Chapter 6

Polynomials

6.1 What is a Polynomial?

In Volume 1, the equations of one variable we saw were usually no more complicated than _quadratic
equations. What happens when we introduce terms with higher powers than 2? This brings us to

the general subject of polynomials. A polynomial is a function of the form
f(x) = anx" + a1 X"+ - +ag,

where the g; are called coefficients (any of these except a, can be 0) and 7, the highest power of x
in the polynomial, is the degree, written deg f. As the form suggests, n is always a nonnegative

integer. Examples of polynomials in x are:

L+2x+5 -2 +5622-V2x+4 x5,
The expressions below are not polynomials in x:

x—1 1
244 Vx-7  4x- . log, x + sinx.

Throughout this chapter, unless we specifically state otherwise, we are considering only polyno-
mials with all rational coefficients.

6.2 Multiplying and Dividing Polynomials
In working with polynomials we sometimes encounter expressions like

©C+32+4x+4

(@ +3x+1)(x* - 3x+4) and o

We can expand this first expression, the product of polynomials, using the distributive property.
Usually it is easiest to set up the multiplication just like when we multiply large numbers. An
example of this is shown below.

4 52 »
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2+ 3x+ 1
22— 3x+ 4

42 +12x+ 4 (1)

- 33 -9x%2 - 3x )

A+ 33+ 22 3)
P+ 0% -4x2+ 9x+ 4

Here we have multiplied 22 + 3x + 1 and x? — 3x + 4 by multiplying (x* + 3x + 1) first by 4
(line (1)), then by —3x (line (2)), then finally by x? (line (3)). Last, we add the results as shown;
grouping the common terms in columns makes this easy. Multiplying the two given quadratics
yields x* — 4x? + 9x + 4. (There is no need to keep the 0x> term).

One pretty obvious result of polynomial multiplication is that for all polynomials f and g,

deg(fg) = deg f +degg.

The proof of this is straightforward. If the degree of f is n and that of g is m, then the product will
contain only one x™*" term and no terms of higher degree. Can you show that if deg f > degg,
then deg(f + g) < deg f?

Just like multiplication of polynomials, division of polynomials can be done very much like long
division. The best way to describe this is by example.

x + 1 1)
2+2x+1 | B2 +32 +4x+ 4
-3 —2% - «x )
x2 4+ 3x + 4
- x¥*-2x-1_(3)
x+3 (4

Let g(x) = x2 +2x+ 1 and f(x) = x* + 3x> + 4x + 4. We divide the first term, x2, of g(x) into the first
term of f(x), x>, yielding the x on line (1). We then multiply g(x) by x and subtract this product from
f(x) as shown on line (2). Again we divide the first term of g(x) into the first term of the result of the
subtraction, yielding 1. Finally, we multiply this quotient, 1, by g(x) and subtract the result as in line
(3). The result is line (4). Since we can’t evenly divide the leading term of g(x) into that of line (4),
we are done. The quotient is x + 1 and the remainder, line (4), is x + 3. Compare this process to long
division of large numbers—it’s exactly the same. Don’t memorize the steps; understand the process

of division.
If we let the remainder be r(x) and the quotient be g(x), we can write the above division as
f@ _ x) -
g(X) - q(X) + g(x)/ or f(x) - q(x)g(x) * r(x).

It is very important to note that the quotient and the remainder above are unique. That is,
given g(x) and f(x), there is only one pair of polynomials (4(x), (x)) such that deg r < deg g and

f(x) = g(x)g(x) + r(x).
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ZXERCISE 6-1 Prove that the quotient and remainder (4(x) and r(x)) are unique for each pair
(%), g(x)).

There is a special shorthand method called synthetic division for dividing polynomials by
expressions of the form (x — ). To introduce synthetic division, we'll take you step by step through
a problem which will be solved with both long division and synthetic division. Pay close attention
not only to how to perform synthetic division, but also why it works.

2 4+3x + 2 1)
x-1| 2+22- x+3 (2
- + 12 3)
3x2 - x+3 (4

— 3x% + 3x (5)

2x + 3 (6)

-2x+2 (7)

5 (8)

Above we did the long division of x— 1 into f(x) = x> +2x2 — x + 3. For synthetic division (shown
below), we don’t write any x’s. The 1 from the constant term of x — 1 goes to the left of the vertical
line on line (9). The coefficients of f(x) are then copied into the remainder of that line. Line (11)
represents the coefficients of the quotient. Clearly the first such coefficient is the first coefficient of
f(x) (since the leading coefficient in (x — 1) is 1). Hence, we copy the first coefficient of f(x) in line (9)
into line (11). Now we have to figure out how to get the rest of line (11).

1112-13 (9
132(1(03
13 25 (11)

Line (10) represents the subtractions at lines (3), (5), and (7) in the long division. In the long
division, we get these by subtracting the product of the quotient and x — 1. Since the first term in
the long divisions on these three lines always cancel, we are only interested in the second terms (the
boldface coefficients). These results are from multiplying —(~1) by the quotient (line (1)). (The first
negative comes from the fact that we are subtracting the products of the quotient and x — 1 on lines
(3), (5), and (7).) The coefficients of the quotient are on line (11), so we get line (10) from multiplying
line (11) and the 1 at the left of our vertical line.

Finally, how do we determine line (11), the quotient? Since the leading coefficient of (x — 1)
is one, the coefficients of the quotient are the coefficients of the leading terms resulting from the
combinations of lines (2) and (3), lines (4) and (5), and lines (6) and (7). Note that these are just the
sums of the boldface numbers and the coefficients of the original f(x)! Hence, we get line (11) from
just adding lines (9) and (10).

Here’s how synthetic division works in action. We'll divide x — 2 into x> — 3x2 + 7x + 4. First we
copy the 2 from the constant term of x —2 and the coefficients of x*> —3x? + 7x +4 into our table. Then,
we copy the first coefficient into line (3):

2'1—3748;

1 3)

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

the ART of PROBLEM SOLVING: Volume 2 * 55

We now get the first number in line (2) by multiplying the 2 to the left of the vertical line and
the 1 in line (3). After this, we add the number in line (2) to the number above it to get the next

coefficient of the quotient in line (3):
2|1 -3741(
13710

1. ~1 3

We continue by multiplying our 2 and the next term in line (3), -1, to get the next term in line (2):

(S BAY

1 -1 5 3)

Now we can finish off the problem by getting our last terms in lines (2) and (3):

1% 140

1 -1 514 (3

So what's the answer? The last line gives us the coefficients of x> — x + 5, but what's the 14 for?
Compare synthetic division to long division and you'll find that 14 is the remainder, so the above
synthetic division tells us that

xz—x+5+—14—.
4

X -3x2+7x+4 _
N -2

x=-2

There are a couple of important points to remember when doing synthetic division. First, it =
only works when we are dividing by a linear polynomial (x — a). Second, the leading coefficient of
this linear term must be 1. (Look at our development of synthetic division to see why we can’t use
synthetic division with a linear coefficient other than 1.) Finally, in synthetic division the term to
the left of the vertical line is the negative of the constant term of the linear divisor. For example, in

the above problem where we divided x — 2 into x% - 322 + 7x + 4, we put 2, not -2, at the left of the
vertical line.

\I/

>

EXAMPLE 6-1 Use synthetic division to determine (8x* — 12x3 + 2x + 1)/(2x + 1).

Solution: First, we must make the coefficient of x in the divisor 1. Hence, we divide the
numerator and denominator by 2 to get

axt -6 +x+1/2
x+1/2

Now we do our synthetic division:

-1/2| 4 -6 0 11/2
-2 4 -21/2
4 -84 -1 1
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(Why is there a 0 in the first line above?) Thus, we find

4 -6 +x+1/2 _ 1
T12 -4x3—8x2+4x—1+x———+1/2,

SO

8x4 -123 +2x +1 2
S —4x3-—8x2+4x—1+2x+1.

EXERCISE 6-2 Use synthetic division to divide x + 3 into x® + 3x* + 22> - x* +x - 7.

6.3 Finding Roots of Polynomials

Suppose we are given the polynomial f(x) and asked to find the solutions to f(x) = 0. We ca.ll
these solutions roots of the polynomial. Unfortunately, no quick and easy method like the quadratfc
formula exists to solve general polynomials. Instead we must go searching for the roots. Does this
mean that we just have to keep guessing values for x until we find one for which f(x) = 0? And how
will we know if we’ve found all such x? Fortunately, we are not completely consigned to guessing.
We do have some helpful hints to guide our way.
First, if a is a root, then (x —a) divides f(x) evenly; that is, there is no remainder when we perform

the division. To see this we write

f(x) = (x —a)q(x) + r(x).
Since deg(x) < deg(x —a)=1, degr(x) = 0, and r(x) is some constant c. Letting x = a gives

f(a) = (a—a)h(a) +c=c.

If f(a) =0, we have ¢ = 0, and thus there is no remainder when we divide f(x) by (x —a).

EXAMPLE 6-2 Prove that the remainder upon dividing f(x) by x —a is f(a).

2

Solution: As above, we write
f() = (x = a)h(x) + r(x).
Since deg r(x) < deg(x - a), r(x) is a constant r. Letting x = a gives f(a) = , so the remainder upon
dividing f(x) by x —ais f(a). Therefore, we can use synthetic division to determine f(a) by finding
the remainder when f(x) is divided by (x — a).

EXAMPLE 6-3 P(x) is a polynomial with real coefficients. When P(x) is divided by x - 1, th.e
remainder is 3. When P(x) is divided by x — 2, the remainder is 5. Find the remainder when P(x) is
divided by x? — 3x +2. (MA® 1990)

Solution: We write
P(x) = (* = 3x + 2)g(x) + r(x),
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where r(x) is the desired remainder. Since degr(x) < deg(x? — 3x + 2), we can write 7(x) = ax + b
for some constants a2 and b. From the given information, we know P(1) = 3 and P.(2) = 5. Since
¥ -3x+2=0forx=2andx=1, we put these values in our equation for P(x), yielding

0)q(1)+r(Q)=a+b=P(1)=3

(0)9(2) +7(2) =2a+b = P(2) = 5.

Solving this system, we find (a,b) = (2,1), so the remainder is 2x+1. Remember this method of %O>
cleverly choosing values for x in polynomial equations; it can be very useful!

The Fundamental Theorem of Algebra states that every nonconstant polynomial has at least
one root. Thus, there is at least one value a such that f(a) = 0. This 2 may be real, imaginary, rational,
or irrational, but the Fundamental Theorem of Algebra assures us that at least one such root exists.
Unfortunately the proof is a bit too complex for this text, but we shall put the theorem to good
use by showing that any degree 1 polynomial has exactly n roots. This means we can write any
polynomial f(x) as

f(x) = apx" +a, X" b ax +ag = ag(x —r1)(x —12) - (x = 7).

The r; are the roots of the polynomial and they are not necessarily real or rational. It should be clear
why f(r;) = 0.

To show that all polynomials can be written in such a fashion we invoke the Fundamental
Theorem of Algebra. By this theorem, we know that for some number r; we can write

f(x) = (x=r)q(x).

Since deg f = n = deg[(x — r1)q1(x)] = deg(x — 1) + degq1, we find degq; = n — 1. Now we apply the
Fundamental Theorem to 4;(x) to get

f() = (x = n)(x - r2)q2(x),

where deg g, = n — 2. Thus, we can continue applying the Fundamental Theorem until finally we
have the desired factorization

f(x) =an(x—r)(x—r2)--- (x = rn).

Showing the roots exist is one thing; finding them is another thing altogether. Rather than
provide a recipe-like formula, the best we can do is give a batch of methods to guide us to the roots.

For the rational roots of a polynomial, there is a method we can use to narrow the search.
Although there are infinitely many rational numbers we could guess as roots of f(x), the only ones
which have a chance of being roots are given by the Rational Root Theorem. For any polynomial

fx) = anX" + ap1x" 1+ ... 4 g9

with integer coefficients, all rational roots are of the form p/q, where |p| and |g] are relatively prime =
integers, p divides ag evenly, and g divides a, evenly. The Rational Root Theorem will be proven as
an example on page 58.
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EXAMPLE 6-4 Find all the roots of x> — 6x% + 11x — 6.

Solution: From the Rational Root Theorem, we know that all possible roots are of the form p/g,
where p divides —6 and q divides 1. Thus the possible roots are {+1, +2, +3, +6}. If we substitute
these in the polynomial, we find that {1,2,3} all satisfy f(x) = 0, so these are the three roots of the
polynomial. (How do we know there aren’t any more?)

EXAMPLE 6-5 Find all the roots of 2x> — 5x2 + 4x — 1.

Solution: Once again we apply the Rational Root Theorem and determine that the possible
roots are {+1/2, +1}. Trying these, we find that both 1 and 1/2 are roots of the polynomial. We know
that there must be one more (why?), but we also know that no other rationals could possibly be
roots. We might think that the third root is irrational or perhaps imaginary, but as we will see, no
polynomial with rational coefficients can have just one irrational or one imaginary root. Thus, we
come to the conclusion that this polynomial must have a double root, just like quadratic expressions
which are perfect squares, such as x? + 2x + 1. Indeed, in this problem, we can use synthetic division
to find (2> — 5x2 + 4x — 1)/(x — 1) = 2x — 3x + 1. Factoring this quadratic, we find

22 —5x% +4x—1=(x - 1)’x - 1),

so that the root x = 1 is a double root, meaning the factor (x — 1) occurs twice.

We have already come across two shortcomings of using the Rational Root Theorem alone. One
is that we will miss multiple roots. Another is that it could still end up taking a very long time, as
there are many numbers for polynomials like 12x* — x — 60 which satisfy the Rational Root Theorem
criteria.

To avoid missing multiple roots and to shorten our search for the roots, when we find a root r;
of the polynomial, we divide (x — r1) into f(x), as

f(x) = (x = r1)g(x).

Then, we continue our search for roots with 4(x), because all roots of g(x) are also roots of f(x). As we
saw in the previous section, synthetic division provides a swift method for performing the division.

EXAMPLE 6-6 Prove the Rational Root Theorem.

Proof: Let p/q be a rational root of the polynomial f(x), where p and q are relatively prime
positive integers. The case where the root is —p/q is virtually the same. Since p/q is a root, we have

n n-1
f(p/q) =ay, (5) + ap-1 (g) +--+ag=0.

Multiplying by 4" gives

anp" + Ay 1p" g 4 alpq"'1 +apq" = 0.
Now look at this equation modulo p. The first n terms on the left will become 0 since they are
multiples of p, so we have

anp" + Bpo1p" g+ -+ a1pg" " +ag" = 0+ -+ + 0 + apg™ (mod p) = 0 (mod p)
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Thus, 24" = 0 (mod p), so plaog™. Since p and q are relatively prime, it follows that plao.
By the same argument, we can evaluate the sum mod g to show that glasp". Thus gla, and the
proof is complete.

There are a few more guides to tell us where to look for roots. The first is Descartes” Rule of EO>
Signs, which gives us a method to count how many positive and how many negative roots there
are. We do this by counting sign changes. The number of sign changes in the coefficients of f(x)
(meaning we list the coefficients from first to last and count how many times they change from
positive to negative) tells us the maximum number of positive roots the polynomial has, and the
number of sign changes in the coefficients of f(—x) gives us the maximum number of negative roots
the polynomial has. Hence, for

fx) =30 +2* =32 +2x -1,

there are at most 3 positive roots and at most 2 negative roots (since f(~x) = —3x° +2x* —3x* —2x—1).
Furthermore, the actual number of positive or negative roots will always differ by an even number
from the aforementioned maximum, so our above f(x) has 1 or 3 positive roots and 0 or 2 negative
roots.

Another root location method is finding upper and lower bounds. Suppose we use synthetic
division to find f(x)/(x - c) where f(x) has a positive leading coefficient and ¢ > 0 as below:

311 -1 2 6
3 6 24

1 28 30

\I/

If all the resulting coefficients in the quotient are positive (including the remainder), as in the
example above, then no roots are greater than c. (Why?) This c is called an upper bound on the
solutions since no roots can be higher. Similarly, if ¢ < 0 and the coefficients of the quotient and
remainder alternate in sign, then there is no root smaller than ¢ (which we then call a lower bound
for the roots). Locating upper and lower bounds will often help you shorten your search for roots.

Lastly, recall from our discussion of quadratic equations in Volume 1 that complex roots and
roots of the form a + b+/c come in pairs if the coefficients of the quadratic are rational. This is also
true of any polynomial with rational coefficients. For example, if the complex number z = a + bi is a
root of f(x), we have

f(2) = an2" + ap12" V4 -+ @z +ap = 0.

Now we use some of our useful properties of complex numbers, such as W +z = W+ z, z* = (2)*, and
w = z implies @ = Z. Applying these principles to f(z), we have

AnZ" + Ap1Z"V + o+ az+ag =

nz" +ap12" 1+ -+ mzZ+0g =

2" + @y a2+ v mZay =

o o ol

Hence, if f(z) = 0, then f(z) = 0,s0Z1is also a root. This proof, with slight modifications, can be used
to show that if z = a + b+/c is a root, then z = a — b+/c is also a root.
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EXAMPLE 6-7 Find all of the solutions to the equation

x* — 1022 +35x2 — 50x + 24 = 0.

Solution: Since the signs of the coefficients of f(—x) are all positive, none of the roots are negative.
This cuts our search in half. Now we use the Rational Root Theorem to deduce that the mos are all
factors of 24. (Why?) We'll start with 1 (usually the best place to start). Synthetic division yields

1/ 1 -10 35 -50 24
1 -9 26-24
1 -9 26-24 0

Since there is no remainder, x — 1 is a factor. Now we continue our search, not with ¥ —-102° +
35x% — 50x + 24, but with the quotient above, since

x* — 1023 + 3522 — 50x + 24 = (x — 1)(x> — 927 + 26x — 24).
Continuing in this manner we find that x = 2 is also a root and we have
x* —10x3 +35x2 — 50x + 24 = (x — 1)(x — 2)(% - 7x + 12).

Factoring the quadratic yields (x — 1)(x — 2)(x — 3)(x — 4) = 0 and our solutions are 1, 2, 3, and 4.

EXAMPLE 6-8 I'm trying to find the roots of f(x) = 2x* — 15x> + 15x% + 20x — 12. I start withx = 1.
After finding f(1) = 10, what should I try next?

N

Solution: Since f(0) = =12 and f(1) = 10, there must be some number ¢ between 0 and 1
such that f(c) = 0, because f(0) and f(1) have opposite signs. (Graph y = f(x), noting that the points
(0,-12) and (1,10) are on the graph, to see why there’s a root between x = 0 and x = 1.) From
the Rational Root Theorem, the only possible rational root between 0 and 1 is 1/2. Using svnthetic
division we find that this indeed works.

Using this ‘location principle’ we can zero in on roots. Namely, if f(a) and f(b) have opposite
signs, then there is a root between a and b.

EXERCISE 6-3 Find the roots of x* + X3 + 2x% + 17x - 21.

EXERCISE 6-4 Given a quartic polynomial with rational coefficients and roots 3 — i and 4 + V2, find
the other two roots.

6.4 Coefficients and Roots

Suppose we are asked to find the sum of the roots of a polynomial. We could just find the roots and
add them all, but that may not be easy to do and could take a long time. Of course, there is a better

way. For example, remember from Volume 1 that the coefficients of a quadratic are directly related
to the sum and product of the roots.
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The coefficients of a polynomial tell us much more than just the sum of the roots. To see this, let
the roots of f(x) = x® + ax% + ayx + ag be r1, r2, and r3, so we can factor f(x) as

f(x) = (x—r)(x—r2)(x—13).
If we multiply this out we get (check and see)
f(x) =3 = (r{ + 12+ 13)2° + (1172 + rar3 + r3)x — nrar3.

By comparing this with f(x) = x3 + apx? + a;x + ag, we see that the coefficients not only give us the
sum of the roots (-a;), but the product of the roots (—ao) and the sum of the products of the roots
taken two at a time (a; = r17, + ror3 + 1113).

Now, what if the leading coefficient of the cubic is something besides 1? Like we did w%th
quadratics, we change the problem to one involving a monic polynomial, i.e. a polynomial with
leading coefficient 1. The roots of

f(x) = a3x® +ax* +mx +ap =0

are the same as those of
g(x):m=x3+53x2+a—lx+@=0,
as as as az
since if f(x) = 0, then g(x) = f(x)/a3 = 0. Thus, the sum of the roots of g(x), and therefore f(x), is
—ay/a3, the product of the roots is —ap/a3, and so on.

Now a quick definition and we will be ready to use these results on any polynomial, not just
cubics. Suppose our polynomial has 1 roots. We define the sum of all products of the roots taken k at
a time, or the kth symmetric sum, as the sum of all products formed by multiplying k of the 7 roots.
Thus, if we have 4 roots which are 1, 1, 2, and 3, the second symmetric sum is

1-14+1-2+1-3+1-2+1:3+2-3=17.

For the general polynomial f(x) = @,x"+- - -+, the kth symmetric sum of the roots is (—1)¥a,_ /ay.
We can prove this through algebra much like our n = 3 case above. The proof is made rigorous
through induction.

EXERCISE 6-5 Use induction to prove the assertion that the kth symmetric sum is (-1)ka,_x/ay.

EXAMPLE 6-9 Find the constant term of a monic quartic polynomial with rational coefficients that
has two roots equal to 2 — i and 2 + V3.

Solution: The other two roots are 2 + i and 2 — V3, so the product of the roots is (2 + i)(2 —
i)(2 + V3)(2 - V3) = (5)(1) = 5. The constant term of a quartic is equal to (—1)* = 1 times the product
of the roots, so the constant term is 5.

EXAMPLE 6-10 If three roots of x* + Ax? + Bx + C = 0 are -1, 2, and 3, then what is the value of
2C — AB? (MA® 1992)
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Solution: Since the coefficient of x3 is 0, the sum of the roots is 0. Thus the fourth root is
—4. Hence
A = (-1)@)+(-1)@) + (-1)(-4) + (2)(3) + (2)(-4) + B)(-4) = -15
B = -[(-1)(2)@3)+ (-1)(2)(-4) + (-1)(3)(-4) + (2)(3)(-4)] = 10
C = (-1)E)(-4) =24,

so2C — AB = 198.

EXERCISE 6-6 Find the largest solution of x> — 27x2 + 242x — 720 = 0 given that one root equals the
average of the other two roots. (MA© 1990)

6.5 Transforming Polynomials

Through the following examples, we will examine how to transform polynomials in various ways.

EXAMPLE 6-11 Find the polynomial whose roots are the reciprocals of the roots of x* — 3x% + x — 9.

Solution: Once again, let the given polynomial be f(x) and the roots be 4, r, r3, and r4. One
equation whose solutions are the reciprocals of these is just f(1/x) = 0 because

1 (5z) = fea=o.

Thus, the solutions of f(1/x) = 0 are the reciprocals of the roots of f(x), as claimed. Unfortunately,

f(1/x) is not a polynomial. On the other hand, the function given by g(x) = x* f(1/x), which also has
roots 1/r;, is a polynomial:

1 3 1
g(x)=x“(;—;+’—c—9) =9+ ¥ -3x2 +1.

This g(x) is our desired polynomial. Now compare g(x) to f(x). Look closely and you'll see that the
coefficients of g(x) are the same as those of f(x) in reverse order! We can prove that this is true in
general in the same way. Let the general polynomial f(x) be f(x) = a,x" + a,_1x"! + -+« + ap with
<D—:— roots 1. ..,r,. The solutions to f(1/x) = 0are x = 1/ry, 1/, .

£ (g75) = e =o.

Thus, the solutions of f(1/x) = 0 are the reciprocals of the roots of f(x). The desired polynomial is
then

.+, 1/ry, because again we have

- - fn , An-1 ay
g(x)—x"f(llx)—x” (x—"+ e +ee 4 —x—+ao> =a0x"+alx"‘1 +otay,

or the original polynomial with the coefficients reversed.
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EXAMPLE 6-12 Find a polynomial whose roots are twice those of f(x) = x* = 3x? +x - 9.

Solution: If we are given a polynomial f(x) = @,x" + a,-1x""! + --- + @, a polynomial with
roots which are k times the roots of f(x) is f(x/k). (Let the roots of f(x) be r1, r2, ..., ra; then for
x =kry, kra, ..., kry, we have f(x/k) = f(r;) = 0.) Hence, the desired polynomial is

X" Ay_x™l a
f(x/k):k—n+"—k:,_1—+---+7(l+ao.

Multiplying both sides by k" to simplify the expression (i.e. to get rid of the fractions), we have
8(x) = K f(x/k) = apx" + kap_1x" 1 + - + K" layx + K"ag

as a polynomial with roots kr;. We form g(x) by multiplying the coefficients of f(x) in turn by 1, k,
K%, ..., k". Hence, one answer to our problem is

g(x) = x* — (22)3)x% + (2%)x — (24)(9) = x* — 12x% + 8x — 144.

E)gAMPLE 6-13 Find the polynomial whose roots are half the reciprocals of the roots of 5x* +12x3 +
8x* —6x—1.

Solution: Let the roots of this polynomial be 4, b, ¢, and d. We seek the polynomial whose
roots are 1/2a,1/2b, 1/2¢, and 1/2d.

The polynomial whose roots are 24, 2b, 2¢, and 2d is
g(x) = 5x* + 12(2)x® + 8(2%)x% - 6(2%)x — 1(2*) = 5x* + 242 + 32x% — 48x — 16.
The polynomial we desire is the one whose roots are reciprocals of the roots of g(x), or

h(x) = —16x* — 48x> + 32x% + 24x + 5.

EXAMPLE 6-14 Find an equation whose roots are 3 greater than those of x* — 3x3 — 3x2 + 4x — 6.

Solution: Let the given polynomial be f(x) and the roots be ry, rz, 73, and r4. In the spirit of
the examples involving reciprocals and multiples of roots, consider the polynomial g(x) = f(x - 3).
We have '

gri+3) = f(ri+3-3)= f(r;) =0,
so the roots of g(x) are 3 greater than those of f(x). Hence, g(x) is the desired polynomial and our
answer is
g(¥) = f(x=3) = (x—3)* - 3(x - 3)> - 3(x - 3)2 + 4(x - 3) — 6.

Similarly, we can show that the polynomial whose roots are k greater than those of a general
polynomial h(x) is h(x — k). However, the above expression for g(x) will take quite a bit of time to
evaluate, so it is useful to find a swifter method if possible.

We will determine f(x — 3) term by term. First we find the constant term, which is just the
polynomial evaluated at x = 0, or f(-3). (Why?) Now we must find the coefficient of x. This is
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tricky. If we subtract the constant term from a polynomial and divide the result by x, the constant
term of the new polynomial is the coefficient of x in the original. This is shown for f(x) below:

[f@) - £O)/x = [x* 32 - 32 + 4x — 6 - (-6)] /x = ©* =32~ 3x +4.

Now we need a swift way to find (f(x — 3) - f(~3)) /x in order to get the coefficient of x in f(x — 3).
Remember that we can write f(x) as

f(x) = (x+3)q1(x) + f(-3)
for some polynomial g;(x). This leads us to our short cut:

f(x=3)=(x-3+3)q1(x - 3) + f(-3) = xq1(x - 3) + f(-3),

or

x—3)— f(-3

fe=9= D) g sy
Since we want the constant term of g;(x — 3), we want g;(-3) (since setting x = 0 eliminates all
terms except the constant term). Now our problem is determining g;(x). Synthetic division of f(x)
by (x + 3) gives us this polynomial, and synthetic division of ;(x) by (x + 3) gives us the desired
remainder q;(—3). By the same argument as above, to find the coefficient of x? we divide g;(x — 3) —
41(—3) by x and find the constant term of the resulting polynomial. Once again, synthetic division
of g1(x) by x + 3 can be used to find this polynomial and constant term. Since after each synthetic

division, the resulting quotient is used for the next synthetic division, we can just ‘stack’ our divisions
as below:

-3 1 -3 -3 4 -6
-3 18 -45 123
-3 1 -6 15 -41 117

-3 27 -126
-3 1 -9 42 -167
-3 36
-3 1 -12 78
-3
-3 1 -15

1
Our desired coefficients, then, are the boldface remainders above, so the polynomial f(x — 3) is
x* — 1527 +78x% — 167x +117.
What we have done here to describe this method is not a complete proof, but we hope it gives
you a clear idea why this ‘trick” works. While this method is somewhat quicker and more reliable

for higher degree polynomials, it is also easy to forget. It is most important to remember that the
polynomial whose roots are k more than those of polynomial f(x) is always given by f(x — k).

EXERCISE 6-7 The roots of f(x) = 3x> — 14x2 + x + 62 = O are a, b, and c. Find the value of

1 " 1 " 1
a+3 b+3 c+3

(MA® 1991)
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WARNING: While you could just memorize the three methods to solve the three general types ‘{
of problems described above, it is much more important to understand why these methods work,
because when you forget the ‘trick’ you’ll be able to arrive at the solution without it. Don’t waste
too much time memorizing; once you've done a few problems with these methods, you'll have
committed them to memory anyway.

6.6 Newton’s Sums

Given x+yand xy, how would we find x2+y2? As we saw in Volume 1, we write x?+y? = (x+y)*~2xy.
Let's try a tougher one. Write x> + > in terms of x2 + 2, x +y, and xy without squaring or cubing any

of these expressions. We can only get x* + 33 from the product (x + y)(x2 + y?) = x> + > + xi? + 2%y.
Hence, we have

P4y = x+ ) +y) -1y - Py = (+ )2 + yD) - xy(x + ).

Now let x and y be the roots of the quadratic 4,22 + @,z +ap = 0 and s; = x+ y*. Our above expression
can then be written as

since X + y = —a1/az and xy = ag/a;. Rearranging this, we can write
aps3 + aysy +agsy = 0.

This nice form suggests that other similar relationships may be true as well.

EXAMPLE 6-15 Show that if s is the sum of the kth powers of the roots of a3x® + a,x2 + a;x + a,
then a3s; + a5 +2a; = 0.

Proof: Let S = az(s2 + azs1/a3 + 2a1/a3). We wish to show that S = 0. Using our relationships
between the roots of the polynomial, which we call 7, 5, and ¢t, and its coefficients, we have

S

a3 ((P+5*+8) + (<(r+s+8)(r+5+1)) +2(rs + 1t + st))

a3((r2+sz+t2)—(r2+52+t2+2rs+2rt+25t)+(2rs+2rt+29t))
0.

Perhaps you see where we're going with this. The family of equations which relates the sum of
the mth powers of the roots of a polynomial to the coefficients of the polynomial as we’ve done above
is called Newton’s sums. If we lets,, be the sum of the mth powers of the roots of f(x)
then the Newton’s sums can be written as

= a,,x"+---+ao,
aps1 +a,-1 =0
ApS2 +ay_151 + 28, 2 =0
AnS3 + An-152 + 251 + 3a,_3 = 0
AnSq + An-153 + An-252 + Ap_35) +4a,_4 = 0
and so on.
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EXERCISE 6-8 What happens to the Newton’s sum xSy + n-15k-1 + " +ka,_ = 0whenn < k?
EXAMPLE 6-16 Find the sum of the cubes of the solutions of x* —3x +3 = 0.

Solution: We use Newton’s sums:
s1+(-3)=0,s0s1 =3;
52 +(=3)s1 +2(3) =0, so s, = 3.
Now, in the next Newton sum, we have a term 34_1, but there is no -1, so this term is just 0. We find
s3+(=3)s2+3s1 =0, sos3 =0.
This is much easier than cubing the solutions to the quadratic.

EXERCISE 6-9 Find the sum of the cubes of the roots of 2x* + 3x° + x* — 4x — 4.

As we've seen, Newton’s sums are just a result of algebraically manipulating expressions .in-
volving the roots of polynomials. The Newton’s sums equations can be proven in general using
the same algebraic techniques as above. Those of you very comfortable with summation notation
and manipulation should try to do so. The leading term in every Newton’s sum is a,s¢. We present
here a less algebraic proof for all Newton’s sum equations in which k > n because it involves a very
important problem solving technique.

Let the roots of the polynomial f(x) be 1, 72,. . . , . Since these are solutions of the equation f(x) =
0, for each r; we have

f(r)) = an?? +an_gr? 4 - +ag = 0.

Multiplying each of these equations by i yields
ﬂ,,f’f + ll,,_lrgk_l) +eee aorjf‘" =0

An?s + parS D 4 g =0

a,.r’,‘, i a,,_lrfl"'” b et o aor),‘l‘" =0.
We can add all of these equations, which gives us
(A 1) e (Ao ) g (A e £207) =0

Thus, we find
AnSk + Ap-1Sk-1 + *** + AQSk—p = 0.

In the special case where k = 1, we have
Skn=S0=13+r+ - +10=1+14-.+1=n,

so the Newton sum is
AnSp + Ap-1Sp-1 + -+ +napg = 0.
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EXAMPLE 6-17 If ry, r3,.. ., rooo are the roots of x1%%° — 10x + 10 = 0, find 71000. 4. 000 v v o

Solution: Since only a0, 1, and 4o are nonzero, we can write the 1000th Newton sum as
s1000 — 10s; + 1000(10) = 0.

Since the coefficient of x¥’ is 0, s; = 0 and s1090 = —10000.

Problems to Solve for Chapter 6

84. Find the remainder when x!3 + 1 is divided by x — 1. (AHSME 1950)

85. Find all the roots of 2y* — 93> + 14y? + 6y — 63 = 0.

86. Find all values of m which will make x + 2 a factor of x> + 3m?x? + mx + 4. (MA© 1991)
87. Find the product of the nth roots of 1. (MA© 1991)

88. The equation x* — 16x> + 94x2 + px + q = 0 has two double roots. Find p + 4. (MA® 1991)

89. Let f(x) = ax” + bx® + cx — 5, where a, b, and c are constants. If f(=7) = 7, then find f(7). (AHSME
1982)

90. For nonzero constants ¢ and d, the equation 4x® — 12x2 + cx + d = 0 has two real roots which add
to give 0. Find d/c. (MA® 1991)

91. Anequation with roots 3+ V2, 3-V2, —3+i V2,and —3—i V2is in the form x*+Ax*+Bx*+Cx+D = 0.
Find A + B + C + D. (MA® 1991)

92. Polynomial P(x) contains only terms of odd degree. When P(x) is divided by x — 3, the remainder
is 6. What is the remainder when P(x) is divided by x* — 97 (MA® 1991)

93. Let ;
p(x) = apx" +ap X" + -+ mx +ag,

where the coefficients a; are integers. If p(0) and p(1) are both odd, show that p(x) has no integral
roots. (Canada 1971)
94, Tf x* + 433 + 6px® + 4qx + 1 is exactly divisible by x* + 3> + 9x + 3, then find (p + g)r. (AHSME 1965)

95. Letr,s,andtbetherootsofx3—6x2+5x—7=0. Find
il 1 1

r—z + SZ + t—z
(MA® 1991)
96. Suppose x =a +biisa solution of the polynomial equation

cazt +ic3® + 02 +iciz+¢9 =0,
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where ¢y, c1, €3, ¢3, ¢4, a, and b are real constants and i = —1. Show that —a + bi is also a solution.
(AHSME 1982)

97. If g1(x) and r; are the quotient and remainder, respectively, when the polynomial x8 is divided

by x + 3, and if g>(x) and r, are the quotient and remainder, respectively, when 4;(x) is divided by
x+ 5, then find 5. (AHSME 1979)

98. Solve the equation (x + 1)(x + 2)(x + 3)(x + 4) = —1. (M&IQ 3)

y

99. Let (1 +x + 2%)" = ag + a1x + a2 + - - + a2,%" be an identity in x. Find ag + az + a4 + -+ + Az, in
terms of n. (AHSME 1966)

100. Give the remainder when x?® — 1 is divided by x* — 1. (MA® 1991)

y

101. Given the equation
(@-3x-2)*-3(2-3x-2)-2-x=0,

prove that the roots of the equation x? — 4x — 2 = 0 are roots of the initial equation and find all real
roots of the given equation. (Bulgaria 1993)

/

102. Let k be a positive integer. Find all polynomials with real coefficients which satisfy the equation
P(P(x)) = [P®)I".

(Canada 1975)

y

103. If a, b, ¢, d are the solutions of the equation x* —mx—3 = 0, then find the polynomial with leading
coefficient 3 whose roots are

a+b+c a+b+d a+c+d b+c+d
afz ’ C2 ’ b2 ’ and az

(AHSME 1981)
\ 104. For n > 1letay, ay, . .., a, be n distinct integers. Prove that the polynomial
f)=(x-a)(x—-a2)---(x—ay) -1

cannot be written as g(x)h(x) where g and h are nonconstant polynomials with integer coefficients.
(MOP)

Chapter 7 Functions page 69
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Chapter 7

Functions

7.1 The Inverse of a Function

A function is a machine. It takes one thing in, and outputs something else. But what if we ran this in
reverse? If we cram something into the output slot, is the machine flexible enough to give us back
the input which would create that output when run forwards?

The inverse function to a function f(x) is anew function g(x) which “undoes” f, so that g(f(x)) = x.
In other words, if you put an input x into f, then put the output, f(x), into g, you will get back x—the
original input.

EXAMPLE 7-1 Prove that if g is the inverse of f, then f is the inverse of g.

Solution: Consider some x in the domain of f, so that f(x) = y for some y. By the defini-
tion of the inverse, we have g(y) = x. Substituting this for x, we have f(g(y)) = y. Since the range
of g is the domain of f, we don't have to worry about g(y) not being in the domain of f; thus, since
f(g(y)) = y holds for all y in the domain of g, f is the inverse of g. The inverse of the inverse is the
original function.

EXAMPLE 7-2 Let’s find the inverse g of the function f(x) = x/(1 + x). Since g is the inverse of f,
we have from Example 7-1 that f is the inverse of g, so that

f(g(x) = g(x)/[1 + g(x)] = x.
Solving the second equality for g(x), we obtain g(x) = x/(1 - x).

EXERCISE 7-1 Find the inverse function of f(x) = /x.

The method of Example 7-2 can be used to find the inverse of many functions.

The inverse of a function f(x) is denoted by f~(x). To be really perverse, we can iterate the
inverse function, as we iterated functions in Volume 1: f~1(f~(x)) = f2(x), and so on.

EXAMPLE 7-3 The “composition exponents” can be manipulated in some of the same ways as
normal exponents. For example,

(f? o fH) = FEEEEESEOMM) = £7(x);
4 69 »
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that is, we can add the “exponents.” As we warned in Volume 1, though, don’t let these similarities
confuse function composition with exponentiation.

§\ EXERCISE 7-2 To what should f°(x) correspond? Is it equal to [f(x)]°?

Does every function have an inverse function? The inverse, if it exists, must itself be a function.
Consider the function f(x) = 2. The inverse is found by setting x = (g(x))?, so that g(x) = + vx. But
this is not a function! Why? Consider the input x = 4; g(4) could be either 2 or -2, but a function
can have only one output.

Thus x? does not have an inverse function. In general, no function can have an inverse function
if it assigns two different x values to the same y, because in the inverse function, that value y won't
know which of the two x’s to go to. A function which has an inverse function takes different x values
to different y values, and is thus called a one to one function, which is often written 1:1. One way
to see if a function has an inverse function is to graph it. If any horizontal line crosses through the
function at more than one point, then there is a y which can be generated by two different x’s, and
the function cannot be one to one.

EXERCISE 7-3 Which are 1:1?

i fx)=x
ii. g(x) = x|
iii. h(x) = |x]
iv. j(x) =x/2

The most interesting thing about inverses comes last. What happens when
we draw the graphs of a function and its inverse on the same axes? Because
the one takes x to y, and the other takes y to x, the graph of the inverse is )
exactly the original graph with the axes reversed. In practice, this means that
the graph is flipped over the line x = y to form the graph of the inverse.
Examine the picture at right to see this graphically, then try graphing some
yourself to get a feel.

7.2 Functional Identities

An important thing to consider in some problems involving functions is the identities they might
satisfy. For example, the logarithm f(x) = log x always satisfies
fxy) = fx) + fy),
since log(xy) = log x + log y for any positive x and y.
In our study of trigonometry we have already encountered some other functional identities,

though they were not identified as such. If we let f(x) = sinx and g(x) = cosx, then two important
trig identities can be expressed as

flx+y) = fgy) + f(y)gx)

and

P +[g@) = 1.
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EXERCISE 7-4 Verify these two trigonometric identities.
EXERCISE 7-5 Which of the following identities are satisfied by f(x) = |x|?
i fly) = f)f )
i fx+y) = fx) + f(y)
iil. f(f(x)) =x
EXERCISE 7-6 Does the floor function (greatest integer function) f(x) satisfy f(nx) = nf(x)
i. if both n and x are integers?

ii. if nis an integer but x is any real?
iii. if n and x are any reals?

EXERCISE 7-7 Find some identities which are satisfied by f(x) = x.

7.3 Solving Functional Identities

We have seen how some functions satisfy interesting identities, but the real trick is to go backwards—
given only the identity, to find the functions which satisfy it. There are many general techniques for
this.

7.3.1 Isolation

The method of isolation is exemplified in solving an identity like

yf(x) = xf(y).

In cases like this, we can bring all expressions involving x to one side and all those with y to the
other, converting the given expression to

f@) _ f)
X y
We can now define a new function g(f) = f(¢)/t; then we have
8(x) = g(y)
for any x and y. Clearly this can only happen for all pairs (x, ) if g(x) is a constant, say ¢. Thus
%
so f(x) = cx, for any constant c, is the family of solutions.
WARNING: Once we have shown that all solutions must be of the form f(x) = cx, we also need ‘{

to test to show that every function of this form is a solution. To do this we go back to the defining
identity yf(x) = xf(y) and substitute in the functional form. Then f(x) becomes cx and f(y) becomes
¢y, making our relation ycx = xcy, which is always satisfied. Thus any function f(x) = cx does the
job.
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7.3.2 Substituting in Values

A surprising amount of information can often be obtained by substituting in values for the variables.
For example, consider the general functional identity

fxy) = xf(y)-

Substituting in the value y = 1yields f(x) = xf(1). Letting f(1) = c since f(1) is a constant, all the
solutions to the identity are given by f(x) = cx.

EXERCISE 7-8 Are all functions f(x) = cx solutions of f(xy) = xf(y)?

As another example of the power of substitution, consider the seemingly complicated
f+y)+ flx-y) =22 +2y%

Substituting y = 0 immediately gives 2f(x) = 212, or f(x) = x* as the only candidate for a solution.
Does this work? We have f(x+y)+ f(x—y) = (x+y)*+(x—y)? = X2 +2xy+ 12 +x2=2xy+y? = 2 +237,
as desired, so f(x) = x? is a solution. It is unique.

EXAMPLE 7-4 The previous example differs from earlier ones in that there is no loose constant;
f(x) = x? is the only solution. In an earlier example where f(x) = cx, there was instead an infinite
family of solutions: some examples include f(x) = x, f(x) = 100x, f(x) = —nx, and so on.

EXERCISE 7-9 Find all solutions to the equation

flx+y)+ f(x—y) = 23 = 242

7.3.3 Using Cyclic Functions
A cyclic function is a function g(x) such that
8(g(--g(x)--+))=x (7.1)

for some number of nested g’s. For example, g(x) = 1/x is cyclic because g(g(x)) = g(1/x) = 1/(1/x) =
x. The number of nested g's in (7.1) is called the order of g; for example, the order of 1/x is 2.

EXERCISE 7-10 Which of the following are cyclic? Of what order?

. 1
| &

=
=

—

1
1+
1_

=

R R

iv.
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How do cyclic functions help with solving functional identities? Consider one like
f)+2f(/x) =x.
If we substitute 1/x for x, we get a new equation,
fA/x)+2f(x) =1/x.

Subtracting the first equation from twice the second to eliminate f(1/x) yields 3f(x) = 2/x - x, so the

only possible solution is

f==-3

Substituting this into the original equation shows that this is in fact a solution. We have used the
fact that 1/x is cyclic to help us find the solutions.

7.3.4 Arbitrary Functions

We have seen solutions to functional equations which were unique, and some which depended on
an arbitrary constant. However, the solutions to some functional equations are much more general.

Consider the functional equation
1+a l1-a
1(55°) =1(55%) +e

a_1+a
9

If we notice that

’

e e

Thus, if we create a new function g(x) = f(x) — x, we have the simpler equation

s(57)=s(%").

To simplify still further, we’ll create a third function k, such that g(x + %) = h(x). Then

5(537) =5(3+3) =1(3)-

and similarly g ( 1 ; a) =h (—_a) Our equation for g thus becomes

(3)-1(3)

But this last equation is satisfied as long as I is even! (Recall that if h is even, then h(-x) = h(x) for

_1-a
2

the equation becomes

any x.) Thus for any even function h(x), we can construct g(x) = h (x - %) and f(x) = g(x) +x =

1 : ,
h (x - -2-) +x, and we'll have a solution to our equation. Rather than just having an arbitrary constant,

our solution has an arbitrary function, because & can be chosen any way we like (as long as it's even).
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EXERCISE 7-11 We have claimed that the function f(x) = h (x - %) + x will solve our functional
equation for any even function h. For the particular even function h(x) = x2, show that it does.

Problems to Solve for Chapter 7

105. If f(2x) = 52; for all x > 0, then find 2f(x). (AHSME 1993)

106. If f(x) = A; and g(x) = 2x, then find all x such that f(g(x)) = g(f(x)). (MA® 1991)
107. Given that f(ax) = af(x) for all real 4, and f(2) = 5, find f(17). (MA® 1992)

108. Find all solutions to the functional equation f(x) + f(x + y) = y + 2. (M&IQ 1991)
109. Find all solutions to the functional equation f(x)/f(y) = y/x. (M&IQ 1991)

110. Given g(x) = 2x + 8 and f(x) = 15, find g o f7}(~2). (MA® 1990)

111. Let f(t) = 14, t # 1. If y = f(x), then x can be expressed as:

A. f(1/y) B. —f(y) C. -f(-y) D. f(-y) E. f(y)

(AHSME 1967)

112. How many of the following sets of functions have the property that, given any two elements
f(x) and g(x) of the set, the composition f(g(x)) is in the set?

1. functions of the formax + b
2. functions of the form ax? + bx +c¢
3. polynomial functions

4. polynomial functions with 12 as a root

(MA® 1992)
113. Given f(ax) = log, x, find f(x). (MA® 1992)

114. Find all solutions to the functional equation 21f(x) - 7 'f: (%) = 12x. (M&IQ 1991)

115. If g(x) = 1 - 2% and f(g(x)) = 15 when x # 0, then find f(1/2). (AHSME 1074)
116. If, for all x, f(x) = f(2a)* and f(x +2) = 27f(x), then find a. (MA® 1992)
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117. Suppose f(x) is defined for all real numbers x; f(x) > 0 for all x; and f(a)f(b) = f(a + b) for alla
and b. Which of the following statements are true? (AHSME 1975)

L f(0)=1

1L f(—a)=1/f(a) for alla
Il.  f(a)= {/f(3a) foralla
v. fb)> f(a)ifb>a

118. 1f f (%) = L forall x # 0,1and 0 < 6 < Z, then find f(sec? 6). (AHSME 1991)

119. If f(x) = x* + x — 1 for x > —2 and g(x) = x? — x for x < 5, then what is the domain of g o f? (MA@
1991)

120. Solve the functional equation f(x + t) — f(x — t) = 4xt. (M&IQ 1991)
121. Given f(x) such that f(1 — x) + (1 — x)f(x) = 5, find £(5). (MA®© 1992)

122. Consider a family of functions fj(x) such that f,(0) = band f,(x) = 2°f,(x—a). Find an expression
for f.(2x) in terms of f,(x). (MA© 1992)

123. If f(x) = log (1) for -1 < x < 1, then find f (%‘;) in terms of f(x).
124. Find an expression for f(4x) in terms of f(x) given that f(x) = x/(x — 1). (MA© 1992)
125. Given a function f(x) satisfying f(x) + 2f (1/(1 — x)) = x, find f(2). (MA® 1992)
126. Solve the equation f(x +t) = f(x) + f(t) + 2 m \/f(—t) for f(x). (M&IQ 1991) §>\
127. Find all solutions to the functional equation f(x +y) — f(y) = x/[y(x + y)]. (M&IQ 1991) ‘§\
128. If f(n+1) = (=1)"*n — 2f(n) for integral n > 1, and f(1) = £(1986), compute
fQ)+ £+ fB) +--- + £(1985).
(ARML 1985)
129. Find all solutions to the functional equation f(1 - x) = f(x) + 1 — 2x. (M&IQ 1991) §\

130. Letg: C > C,w € C,a € C,w® = 1, and w # 1. Show that there is one and only one function 5\
f: € — Csuch that
f@) + f(oz+a)=g(2), z€C,

and find the function f. (IMO 1989)

Chapter 8 Taking it to the limit page 76
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Chapter 8
Taking it to the Limit

8.1 Whatis a Limit?

Consider the sequence

fa) Lze
n+1) 7 2°3 4" "7

A particularly interesting question that one can ask about such a sequence is to what value does it
tend? The value of the sequence for n = 17 is obviously 17/18, but as n goes to co, what is the limiting
value?

To be rigorous about this concept is fairly difficult, so we will try to examine the limit in a
commonsense way. In this case, as n gets larger and larger, the fraction gets closer and closer to 1.

EXERCISE 8-1 Does the last sentence make sense to you? If not, you should talk to someone before
you go on. If you understand that one sentence, the rest of this chapter should be a breeze. Really.

n

To express the concept that the sequence T approaches 1 as n gets larger, we say that the
sequence tends to 1, or that the limit of the sequence as n tends to co is 1. To express this concept
in symbols, we write

Jiim, ],
n—oopn +1
EXAMPLE 8-1 One important example of a limit is
1
n—oo n
As n increases, the sequence decreases:
111
T/ E/ 5/
It is clear that the sequence tends to 0.
1. 1
EXERCISE 8-2 What s lim ?? Jlim F? Generalize.
< 76 »
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The previous examples can be used to evaluate a great many limits. For example, they immedi-
ately solve the entire category of rational functions, functions like

33 +9x+2 (8.1)
53 —12x2+x+1
which are the ratio of one polynomial to another. What happens as x tends smoothly to co?
To analyze a rational function like (8.1), we divide the top and bottom by the highest power of x

present. In this case, the power is x3, so the result is

3+%+3%

B~ t g g

When we take the limit x — oo, everything with x in the denominator goes to 0 and we are left with
3/5, the final limit.

EXERCISE 8-3 Evaluate

£ T 24 —7x2 +1

T x—oo 4xt —4x3 +4x2 - 6x + 17

i Tim 23 -7x2 +1

T x—oo 4xt — 4x3 + 4x2 - 6x + 17
200 -7x2 +1

i T S P — G 17

8.2 Tricky

Though the limits we dealt with in the previous section were quite simple, limits can actually be a
very tricky business. For many sequences, the limit may not even exist! The simple example of a
function for which this is a sequence like 1, 2, 3,.. ., for which there is simply no limiting value. A
similar case was the third part of Exercise 8-3; there, as x increased, the function increased without .
bound. A sequence or function for which there is no upper limit on the values is called unbounded; J
we write }_151; f(x) = co. (WARNING: This “c0” is just a symbolic shorthand for saying that the limit ‘

diverges in the positive direction. DO NOT treat it as a regular number.)

EXAMPLE 8-2 Let’s construct a rigorous definition of our terms. A sequence (a,} or function f(x)
is unbounded if and only if it gets as big as we want at some point; that is, if

for every number N, there is some choice of n or x such that |a,| > N or|f(x)| > N.

Note that by using the absolute value we have allowed for functions to be unbounded toward the
negative as well, like -1, =2, =3, .... We've also taken care of others that might try to evade the
definition, like 1, =2, 3, —4, ... or similar miscreants.

EXERCISE 8-4 Rigorously define what it means for a sequence or function to be bounded, the
opposite of unbounded.

EXERCISE 8-5 1s every sequence either bounded or unbounded?

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

78 ¥ CHAPTER 8. TAKING IT TO THE LIMIT

This boundless increase (or decrease or alternation) is only the simplest way in which a sequence
or function can fail to have a limit. We can come up with many other devious ways as well. For
example, consider the sequence

0;1; 0,1,0, 1,04, '
or alternatively the function sinx. Although the sequence and the function are both bounded‘, tl:lere
is again no limiting value. (Why?) So being bounded is not enough for a function to have a limit.

A function which has no limit, regardless of the particular way in whichit fails, is called divergent.

’5\ EXERCISE 8-6 Think about how you might rigorously define a convergent sequence or ﬁfnctic.m.
Before you get too confident about this task, think about this: your definition should distinguish
between a sequence like 0,1,0,1,0,1,0,1, ..., which has no limit, and one like 0, 1,0,1,0,1,0,0,0,
0,0, ..., which has limit 0. Only the long term behavior should matter.

EXERCISE 8-7 Which rational functions are convergent? Which are convergent to nonzero values?

8.3 Working with Limits

In Section 8.1, we analyzed the limits of rational functions. But we implicitly assumed se.ve.ral thmgs
For example, we assumed that the limit of a ratio is equal to the ratio of the individual limits; that is,

th
* i F® _ lim £(x)
n (@)~ lim g(x)

Without this being true, we would have been unable to make the crucial last step, where we said
that since the limit of the numerator of

3+53+5%
5-124 1+ 1,
was 3 and that of the denominator 5, the final limit must be 3/5.

We made another assumption as well, that the limit of a sum equals the sum of the individual
limits. This assumption is what allows us to say that the limit of the top,

: 9 2
lim (3 + ; + x—a)
must equal g )
lim 3+ lim < + lim == =3+0+0=3.
X—00 x—00 x2  x—o0 x3
In fact, these two assumptions are generally true (and similar results hold for multiplication and
exponentiation), as long as all the limits exist and no divisions by zero occur. A proof of this is a
% little too complicated to deal with here.
‘[ WARNING: When divisions by zero occur, interesting—and dangerous—things occur. Suppose
we have two functions f(x) and g(x) and we wish to evaluate

im f®)
mg(x)'
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If }g& 8(x) # 0, then everything is fine; we just write
lim £(x)
Lo @) _

X—00

X—00 @ - xl]__'n;lo g(x) )
Even if Hg 8(x) = 0, we can make an immediate conclusion if }l_.r.{,\o f(x) # 0. We then have

lim flx_) _ something other than 0 -

X—00 g(x) 0
(Why?) But if both }grolo g(x) =0and 1151;10 f(x) = 0, interesting things can happen. The top could go
to zero much faster than the bottom, resulting in a limit of 0 (for example, try f(x) = 2 8x) = 2)-
The top could go to zero much slower than the bottom, resulting in a limit of . (Can you find an
example of this situation?) Or, in the most interesting case, the two can go to zero at cgmparabée
speeds, resulting in some finite, nonzero limit. A simple example of this last case is f(x) = 7, 8(x) = 3,
in which lim f(x)/g(x) = 3/5. A more complicated example is f(x) = sin (1), s = 1

EXERCISE 8-8 On a calculator, evaluate sin(1/1000)/(1/1000). (Make sure you are using radians for
the angle measure!) Do you have a guess as to what lim sin(1/x)/(1/x) is?

Be very careful that you don’t see a limit in which the top and bottom both go to 0 and automat- ‘J
ically assume that the limit is 1. As we have shown, a 0/0 limit can have any value whatsoever.

EXAMPLE 8-3 Certain simple transformations are possible when working with limits. For example,
suppose we know that xh—{rolo f(x) = L and we want to know P_ﬁ‘o f(5x). As x goes off to infinity, so

does 5x, so we can write
lim £(52) = lim f(5%) = lim f(y) =L,
where we have made the substitution y = 5x.

EXAMPLE 8-4 A more useful transformation can be used to convert a limit as x tends to infinity
into a limit as x tends to 0, or vice versa. We simply define y = 1/x and note that as x goes to infinity

y goes to 0, and as x goes to 0, y goes to infinity. Thus
lim f(x) =lim f(1/y) and lim f(x) = lim f(1/y)-

EXAMPLE 8-5 Find
lim V2x +10 - Vx + 13
x—-3 x-3 ’

Solution: For x = 3, we find that our limit is 0/0. A general technique in dealing with limits
involving square roots is multiplying top and bottom by a conjugate expression, or V2x +10+Vx + 13

in this case:
. VX +10-vVx+13 _ lim(\/2x+10—\/x+13)(\/2x+10+\/x+13)
o x—3 = (x-3)(Vx+ 10+ Vx + 13)
= lim x-3
-3 (x - 3)(V2x + 10 + Vx + 13)
1 1

lim i
-3 V2x+10+vVx+13 8 -
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Remember this use of multiplication by the conjugate of a radical expression, it is often the key to
simplifying limits.

8.4 Continuity

We have so far only considered the limit of a function as x — 0. This is because other limits usually
aren’t all that interesting! For example, lirr%x2 +2isjust22 +2=6.
xX—

In general, saying that the limit of a function f(x) as x goes to some finite 2 is equal to f(a) is
the same as saying the function is continuous at the point . In Volume 1, we defined a c-ontllnuous
function as being one which could be drawn without picking up the pen. However, we dld'n t make
the distinction that a function is often continuous in most places with isolated discontinuities.

For example, consider a function g(x), defined as i

x, forx#-2;
-

3, forx=-2. - +——+—>

We have plotted g(x) at right. Clearly g(x) is continuous everywhere except
at x = —2. But consider the behavior near that point. The limit xl_i}x-lz g(x) is

the value that is being approached as we get closer and closer to -2, not the )
value at —2. Thus lim2 g(x) = =2, while of course, g(~2) = 3. The limit is not equal to the value! This
means that the fu;:ti_on is not continuous at x = —2. Everywhere else, the limit equals the value, so
% the function is continuous everywhere else.
.J WARNING: Always remember that the limit is the value which the function approaches as we
get closer and closer to a point, not the value of the function at the point. The two are equal only for
continuous functions.

EXAMPLE 8-6 The discontinuity we just saw can be completely removed by changing the behavior
of the function at a single point: set g(~2) = -2 and it is completely removed. This “nice” type of
discontinuity is called a removable discontinuity. Such discontinuities often appear when dealing
with rational functions. For example, take the function

Since the top factors into (x — 1)(x — 3) and the bottom into (x - 1)(x - 2), the function is always equal
to (x - 3)/(x = 2)... EXCEPT whenx -1 equals zero. Then the function is not defined. Thus there is
a “hole” in the function at x = 1, where it is not defined at all.

Why do we say this discontinuity is removable? Because we can set the value of the original
function at x = 1 to its limit,

1mx2_4x+3 B imx_s _

132 =3x+2  x-1x-2

1-3
1-2‘L

which will immediately remove the discontinuity.

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

the ART of PROBLEM SOLVING: Volume 2 < 81

Other types of discontinuities aren’t so easy to remove. Consider the step function

0, forx<0

= {1, for x > 0.

Here there is no way to remove the discontinuity at x = 0, since the limit of the function does not
exist at x = 0! We can define separate limits from the left- and right-hand sides to see why this is so;
the left-hand limit (limit approaching 0 from the negative side)

Jig £
is 0, while the right-hand limit
lim f(x)
x—0*

is 1. Clearly, the limit of a function at a point only exists if the left and right limits are equal to one
another at that point. Since there is no limit for the step function at 0, we certainly can’t “fix” the
discontinuity just by changing the value at one point. Thus this is an essential discontinuity.

EXERCISE 8-9 Evaluate

. - :
lim — and lim —.
x=0- |x| x—0* [x|
Does ¥
lim —
x—0 |x|
exist?

8.5 Asymptotes

Limits are especially useful for functions, because the limits give vital information as to a function’s
structure. For example, let’s try to plot

3x2-6x+3
f®) = 57 o5y v 20"

Plotting point-by-point would be very tedious for such a function, and important structural details
might be missed altogether. In seeking a different way to plot the function, we note that

Jim ) = Jlim_ £ = 2.

This immediately tells us something that we wouldn’t find using the
plug-in method of plotting: for very large and very small x, the function
must get closer and closer to the horizontal line y = 3/5. This line, shown ———]—
at right, is called an asymptote, and will be a useful guide; try to identify it ’
now in the final graph of the function, shown below. (Can you see how to
find the horizontal asymptotes of any rational function?)

[ ]
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Factoring the top and bottom of the equation yields f(x) = 3(x—1)*/5(x—4)(x—1), which presents
more guidelines. The function is not defined for x = 4 and x = 1, since the bottom of the fraction
becomes 0 at those points. But the two points don’t behave the same. The limit of f! (x)asx ?‘PP"‘?’;"Ches
4is undefined, since the top does not go to 0 and the bottom does. As x approaches 4 from the right,
f(x) will diverge to positive oo; as x approaches 4 from the left, f(x) will diverge to —co. (To see
what the signs should be, imagine, but don’t actually calculate, what would happen for x = 4.'1 a'nd
x =3.9.) As x gets closer and closer to 4, the graph gets closer and closer to the line x = 4, so this line
is a vertical asymptote. Identify the line in the graph below, and figure out why it is also called an
asymptote. (How can we find vertical asymptotes of a general rational function?)

On the other hand, the limit of the function as x approaches 1 can easily be evaluated:

3(x - 1)? =11,m3(x-1) Y 0 _
x-15(x—4)(x—-1) x->15(x—-4) x-1-15
Unlike the unruly behavior near x = 4, the behavior near x = 1 is nice: the curve is smooth except
for the removable discontinuity exactly at x = 1.

0.

As a final clue to the shape of the graph, let’s see where the function t L
crosses the x axis. The numerator of the fraction must be 0, so x = 1 is the r2
only point, but this point is the removable discontinuity shown with the A
open circle. Combining this with our knowledge of the function as it nears
both the vertical and the horizontal asymptotes generates the graph at right. ‘\

23 -3 +x-6

EXAMPLE 8-7 Plot the function 2 —3232

Solution: Factoring the bottom yields (x — 2)(x — 1), so we see if either x — 2 or x — 1 also
divides the top. The first does, and the top factors into (x — 2)(2x% + x + 3). Since the top and bottom
share a factor x — 2, there is a removable discontinuity at x = 2, with value

. (x=-2)2x2+x+3) _ lim 2x2+x+3) i,
=2 (x=2)(x-1) -2 (x=1)
On the other hand, x — 1 does not divide the top, so there is a vertical asymptote at x = 1. As x
approaches 1 from the positive side the function soars to o, and as x comes in from the negative side
the function dives to —oo.

There is no horizontal asymptote since the numerator has greater degree than the denominator;
thus you might think we have gleaned all the clues we can. On the contrary, getting rid of the (x —2)
which is common to the numerator and denominator, we are left with (2x2 +x+3)/(x—1), which upon
polynomial divison becomes

4
2x+3+—6—. 1 \&/
x-1 |

For x — oo or x — —oo, the fraction tends to zero, so the function
approaches the line 2x + 3! This slant asymptote is an important /‘\l
v

graphing tool, as you can see. We now sketch the graph noticing
its behavior at x = 1, and that it approaches the line 2x + 3 as x gets
large and as x gets small. The open circle on the curve represents
the removable discontinuity.
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8.6 Trig Limits

Many, if not most, limits require the machinery of calculus to be done with any efficiency. However,
certain basic trigonometric limits can be done with simple geometry, and are nevertheless very
important.

The simplest trigonometric limits one can think of might be things like lim sinx or lm(\) cos X.

X=b!
These aren’t too interesting—the first diverges, with sin x oscillating between 1 and —1; the second
is equal to cos 0 = 1 since cosine is continuous.

A more challenging limit is lirr& sinx/x. Here the limits of the top and bottom are both 0, so the
X
usual methods don’t apply.

Consider the diagram at right to get an intuitive feeling for the limit in
question. If the radius of the circle is 1 and ZPOB = x, where x is in radians,
then elementary trig shows that PA = sinx, where ZPAO is a right angle.
Moreover, the arc PB is equal to x, since by geometry the length of a cutoff arc
is 0. Thus the ratio sin x/x is the ratio between the length of the vertical line
and the arc. It seems likely that as the angle x gets smaller and smaller, the arc
will differ less and less from the line, so the limit of their ratio appears to be 1.

We can get a quantitative look at the ratio by using a calculator. For a very small value of x, say
x = 0.01, we find that sinx/x = 0.99998 ~ 1. This confirms our geometric insight that the limit as
x — 0 seems to be 1.

EXERCISE 8-10 How does the calculation we just did compare to the calculation done in Exer-
cise 8-8?

Assuming you’re convinced that the limit is going to be 1, the only question is how to prove it. "5\
We will resort fo the squeeze principle, which states that if the function f(x) is always between the
functions f;(x) and f2(x), so that fi(x) < f(x) < f2(x), then

lim fi(x) < lim f(x) < lim fo(x).

This is intuitively clear: if all the values of one function are between those of two others, its limits
should be between the limits of the other functions.

We put the squeeze on the diagram above by drawing an additional circle, P
with center O and radius OA. Let C the point where the new circle intersects ‘
segment PO. We can then say that ‘. ;

Area sector OAC < Area AOAP < Area sector OBP.

The length of OA is cos x, by elementary trigonometry, so the area of sector
OAC is xcos?x/2 using the formula for the area of a sector in Volume 1.
Similarly, the area of sector OBP is x/2. We also know that the area of AOAP is cos x sin x/2, since it
is a right triangle with legs OA = cosx and AP = sinx. Substituting this into the equation above, we

have

xcos?x cosxsinx

2 T 2

b
<§,
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or ) :
cosx < — pg

Now lin(x)cos x=1,s0 lh%(l/ cos x) = 1. Taking limits, we thus have
x= x—

gl 2o,
=0 X
so that .
lim =5 =1,
-0 X
as we had guessed.
A similar trigonometric limit is
i 1-cosx (8.2)
x—0 X

Like lim %‘ this limit is of the form 0/0. But unlike that limit, (8.2) is 0, as can be shown with a
x—
similar squeezing argument.

EXAMPLE 8-8 Evaluate lin(t) tan 3x/4x.

Solution: We have

. tan3x . 3 (tan3x
e —ax l‘f&i( 3x ) ~
3 .. sin3x 1
- Zsl:}r—r}o( 3x )(c053x)
S CUMES
4 y—0 y y—0 \ cosy
3
= Z.1.1
- 3
= 5
We have used the fact that a limit as x — 0 is the same as a limit as 3x — 0 and then substituted
y = 3x.
8.7 e

If I put a dollar in the bank at 100% interest per year, after one year I will have $2. Suppose, however,
that the interest is compounded once during the year. This means that after six months I receive the
interest so far, 1/2 dollar, and for the second six months I receive interest on all the money I have,
1+ 1/2 dollars. Hence my total at the end of the yearis (1 +1/2) + 1/2(1 +1/2) = (1+1/2)2. (Figure

out how much this is.) I have more with the compound interest, because I am paid interest on the
first six months’ interest during the second six months.
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My interest can be compounded more than once. If my interest is compounded twice, at the end
of 1/3 year I have 1+1/3, at the end of 2/3 year I have (1+1/3)+1/3(1+1/3) = (1+ 1/3)?, and at the
end of the year T have (1 +1/3)2 +1/3(1 + 1/3)2 = (1 + 1/3)?. Similarly, if my interest is compounded
n times during the year, at the end of the year I have (1 + 1/n)" dollars.

EXERCISE 8-11 Evaluate the expression (1 + 1/n)" on your calculator for n = 10 and n = 190. .As
my interest is compounded more and more often, does my yield diverge or approach a fixed limit?

As you should have seen in Exercise 8-11, compounding interest more and more often dpes nc.)t
lead to an infinite amount of money. Rather, it approaches the fixed limit 2.71.... We define this
limit to be the constant e: .

lim (1 + 1) =e.
n

n—oco

The importance of the constant e really comes out in calculus, but it also has some importance
in our discussion. For example, the so-called natural logarithm Inx denotes the logarithm base ¢,
log, x. Moreover, the exponential function ¢* appears in many contexts.

2 3x
EXAMPLE 89 Evaluate lim (1 + ;) .

i 6u
Solution: We first use the substitution x = 2u to write the given limit as ull_.r.l;lc (1 + ;) . We
then use the fact that lim y* = (lim y)* to write

1 6 1\ * 6
i (1+2)" = (i (1+2))" =
u—oo u u—oo u

Problems to Solve for Chapter 8

131. For what value of k is the following function continuous at x = 2? (MA© 1991)

V2x+5- Vx+7
fx) = N forx # 2
k forx=2
132. Evaluate the following limits.
. sin3x
i lim ——
ii. lim r+8
—=-2 X+2
& Tim Vx—4

1.
—16 x— 16

133. The graph of f(x) = (¥ — x — 2)/(x + 2) has an oblique (slant) asymptote. Find the equation of
this asymptote. (MA© 1990)
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134. Evaluate }i_g;( Vax2 + 5x — Vax2 + x).
135. Evaluate chif.% sin? x/x.

136. Evaluate (lgi_rf(\] B cot 6.

2

—Ccosx _ sin“x
x(1 + cosx)

138. Find all asymptotes of the function x3/(x? - 1).
139. Evaluate }g& 6x/ V9x2 + 17x.

V3x2 + 17x

x

137. Use the identity L

to prove that lin[}(l —cosx)/x=0.

140. Evaluate lim
X=0C0

the ART of PROBLEM SOLVING: Volume 2 .« 897

——the BIG PICTURE

Centrally important in the field of computer science is the study of algorithms, repetih'ye
procedures used to accomplish tasks on a computer. For example, suppose [ was given a list
(a1 az a3 -+ -ay,) of numbers and asked to find the largest element L. A simple algorithm would
be as follows: first take L = a1. Then go down the list, comparing each a; to the current value
of L; if a; > L, then set L to be a;. Thus if the list were (2 1 3 4 2), after each step, the current
largest element would be 2, 2, 3, 4, 4.

An algorithm is only useful if it can be run in a reasonable length of time. For this reas'on,
computer scientists have a way to classify algorithms based on their running time; this notation
depends on several concepts of limits. An algorithm’s running time is some function f(N) of
the size of the problem given. Our example above would take 3 steps if the list of numl?efs
had length 3, 17 steps if the list were length 17, and so on, so in this case f(N) = N. This is
simple, buta complex algorithm might have a very complicated function f(N), like 18N?logN—
12N(log N)? + 7.

In practice, though, the complicated details of the function f aren’t all that interesting.
What really determines the running time is the term of f which is largest as N — oo. ‘To
classify an algorithm, then, computer scientists use only this first term. The algorithm with
the complicated function above would thus be called “an N?log N algorithm.” To denote this
type of approximation, we use a capital O, as in O(N?1ogN).

The most important types of algorithms are, from fastest to slowest, O(1), O(logN), O(N),
O(N?), and O(2V). The last is of particular importance, because an O(2") algorithm is very
slow for large N. This can be seen in the fact that if the problem size goes from N to N +1,
the running time goes from 2N to 2N+1_jt doubles! For even moderately-sized problems, an
O(2N) algorithm is impractical. On the other end of the spectrum, the running time of an
O(log N) algorithm grows very slowly with the problem size N, and the running time of an
O(1) algorithm is a constant regardless of problem size. (For example, the problem of finding
the 12th element of a list is an O(1) algorithm.)

Chapter 9 Complex Numbers page 88
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Chapter 9

Complex Numbers

9.1 Drawing the Complex Numbers

The standard picture of the real numbers is a line:

il

6 5 -4-3-2-101 2 3 45 6

Each real number is associated with a point on the line, and each point with a real number.

Can we devise a similar representation for all 6i+
complex numbers? Suppose we place the pure sl
imaginaries on a line perpendicular to the reals. i 344
If we then put the two lines together, so that 4t .
they overlap at their zero points (since 0i = 0), 3i+
then we can associate every point in the plane |
with a complex number, where the x-coordinate 54i

is the real part and the y-coordinate is the com-
plex part. To see how this works, examine the
figure at right. It should be fairly clear that we
can represent any complex number by a point

i.
[ 125456

B ol 3 S =]

in this plane, and that every point in the plane ey 1A
represents a different complex number. La
T4
T5i
1 6i

EXERCISE 9-1 Draw a complex plane with the points } + 3i and - + V2i.

EXERCISE 9-2 Draw the set of points z in the complex plane such that:
i. Re(z) = 1.
ii. Im(z) + Re(z) = 1.
iii. Im(z) < 1.

4 88 »
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EXERCISE 9-3 Forz =3 +2i,draw z, %, 22, and z — 1.

Once we understand the complex plane, we can use it to expand our understanding of complex
numbers. For example, we have used rectangular coordinates to locate points in the complex plane.
But these are not the only coordinates we could use. Let’s apply polar coordinates instead. In our
discussion of polar coordinates (page 47) we saw that the polar coordinates (r, 6) of a point (x, y) are

such that
= = 2 2
x_rcgse il r=4/x*+y

y=rsin@ 6 = arctan(y/x)

For a complex number z, we have chosen the rectangular coordinates to be (Re(z), Im(z)). Thus the
associated polar coordinates (r, 0) of z will be such that

Re(z) = rcosB
Im(z) = rsin6. 9.1)

But since z = Re(z) + i Im(z), we then have
z=rcos 0 +irsinf. (9.2)

This is called the trigonometric representation of a complex number, and is sometimes written
simply z = rcis 6. Of course, just giving the polar coordinates (r,6) is enough to determine z
completely; this is called the polar representation.

EXAMPLE 9-1 Find the polar representation for i.

Solution: We use equations (9.1) to get rcos@ = 0 and rsinf = 1. Clearly 6 must be 11/2
and r must be 1, so the polar representation is (1, 71/2).

EXERCISE 94 Draw the pointsr=2,0 =n/3andr=3,0 = m.
EXERCISE 9-5 Draw the curves r = 1 and 6 = n/3 in the complex plane.

As with regular polar coordinates, the numbers r and 6 are the distance from the origin to z
and the angle between z and the positive real axis, respectively. It is important to remember the
ambiguity in the value of 8 as well; for a given 6 we could just as well use 6 + 27, 8 + 47, etc. See

page 47 for a discussion of this ambiguity.

9.2 The Complex Absolute Value

The value of r is particularly important. Like the absolute value for real numbers, it is simply
the distance to the origin of coordinates. We therefore call r the absolute value, or sometimes the
magnitude or the modulus, of a complex number z and denote it by |z|. For a generic complex

number x + iy, we have |x + iy| = r = /x2 + y2.
The complex absolute value has some interesting properties. Perhaps the most important is that = O>
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|zw] = |z||w] for any z and w. To see this, we just write

|z I(z1 + z20) (w1 + w2

[z1w1 — zaw2) + (212 + Z2W1)il
(@w) - 2wy + (21702 + 22w1)?

(cancelling terms) = \/Z2w? + 22w} + w3 + 23w}

V(@ + )@} +w})

V3 +Z Vi + w3

Izllwl,

and we're done. Similarly we can show that |z/w]| = |z|/|wl.

I

EXERCISE 9-6 Find the absolute value of the complex number (12 + 5i)(7 — 24i).
EXERCISE 9-7 Find a counterexample to the false claim |w + z| = [w] + [2].

Let’s examine the relationship between |w + z| and |w]| + |z|. Above you should have found that
these two quantities are not always equal, but you should also have seen, or at least suspected, that
[w + z| is never larger than the sum |w| + |z|. To prove our suspicion, we write lw| + |z| = |[w+ z] in
terms of w = w; + wai and z = 2y + 251

VE+Z+Jwk+wd> V(@ +w1)? + (22 + w2)?.

Squaring both sides and cancelling common terms leaves

24/22 + 2% \Jw} + wh > 27wy + 220w,

Cancelling the 2's and squaring again, we get
At +Zwj + Zud + Zuj 2 2wl + 2 zwiwy + Zug,

or
z%w% - 22122!01102 + z%w% > 0.

Recognizing the left as a perfect square, we write
(21wz — z2w1)* 20,

which is clearly always true. Our steps are reversible, so our original inequality must hold. We can
find when || + |z| = [w + z| by noting that these can only be equal when (zyw; — z,w,)? = 0. (Why?)
This occurs when z;w; = zawy, or z1/wy = z2/w. Letting this common ratio be ¢, our equality
condition is z; = cw; and z; = cws, SO z = cw and one number is just a real multiple of the other!

The inequality [w| + 2| > [w + 2| is called the Triangle Inequality for complex numbers. Given
the name, you might think the inequality has something to do with geometry. You're right; using
a geometric representation of complex numbers and complex addition, we can prove the Triangle
Inequality quite easily. (This is done on page 103.)
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EXERCISE 9-8 What is the equality condition of the Triangle Inequality when w and z are written
in polar form?

EXERCISE 9-9 Prove that |z| + |w| > |z — w|.

9.3 Complex Multiplication and Coordinates

We now ask the question: what is the effect of complex multiplication in our new coordinate
perspective? We can answer this immediately. Consider two complex numbers 2; = r1(cos 671 +
isin 6y) and 23 = ry(cos 0, + isin 6;). Their product is

2122 r17r2(cos 81 cos O, + i cos By sin 8, + isin B; cos B, — sin O sin 62)

rra ((cos 61 cos B, — sin B sin 0;) + i(cos 61 sin B, + sin 61 cos 62))

rra (cos(61 + 07) +isin(6; + 62)).

The coordinates of the product of (r1, 81) and (r3, 8,) are thus (r172, 61 + 62). When we multiply two
complex numbers, the magnitudes multiply and the angles add.

EXAMPLE 9-2 Take the complex number 3 + i—.‘? = (cos § +isin §). When it is multiplied by any
complex number r(cos @ + isin 6), the product is r(cos(B +3) +isin(6 + g)) Thus multiplication by

1+ i% is a rotation by the angle 3.

EXERCISE 9-10 To what geometrical motion does multiplication by i correspond, in the sense of
Example 9-2?

EXERCISE 9-11 On a complex plane, draw the points 2 + 3i, 1 + 2i, and (2 + 3i)(1 + 2i) to convince
yourself that the magnitudes multiply and the angles add to form the product.

While the polar method is a more satisfying way to look at complex multiplication, for routine
calculation it is usually easier to fall back on the distributive law as used in Volume 1. However,
for more complicated calculations and clever applications, the polar approach is often much more
fruitful.

9.4 Complex Powers and Geometry

Once we have a representation for multiplication, we can tackle powers. Consider the generic com-
plex number z = r(cos 6 +isin 6). The power z" (Where 1 is a positive integer) is just a productzzz:--z
with n z’s multiplied together. Thus the magnitude is the product of the individual magnitudes, or
", and the angle is the sum of the individual angles, or n6. For positive integers n, we immediately
have -

[cos 6 +isin6)]" = " (cos(n6) + isin(n6)),
which can be written in the more memorable form

(r,0)" = (r",nb). (9.3)
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EXERCISE 9-12 How could we express the powers of i in polar form?

EXAMPLE 9-3 To see what exponentiation looks like, let’s consider

the powers of V2+iV2 = 2(cos § +isinf). The second power is Cc
4(cos 7 +isin §) = 4i, the third power 8(cos 3 +isin ) = -4 V2+4 V2i, 5
the fourth power 16(cos 7 + isinm) = —16, etc. The first three powers
are at points A, B, and C at right, where one tick mark equals 2 units.
To go from one power to the next, we rotate 45° counterclockwise and
double the distance from the origin.

EXAMPLE 9-4 We can easily extend the result of equation (9.3) to

negative integers as well. Take (r, 0)™", where n is a positive integer. We

can set (r,6)™ = (s, $) and write 1 = (r,0)™"(r, 6)" = (s, p)(r", n60), where

the last equality comes from equation (9.3). Using the fact that magnitudes multiply and angles add,
we then have (sr", ¢ + n6) = (1,0),s0s = r" and ¢ = —n6. Thus (r,0)™" = (r™", —n6), as desired.

EXERCISE 9-13 What is the geometrical relationship of z = (1, 6) and
its reciprocal for any angle 6?

EXAMPLE 9-5 Let’s extend Example 9-3 to some negative powers of
V2 +iV2 = 2(cos § +isin Z). The —1st power is } (cos(-%) + isin(—%)), T
the —2nd power (cos(~%) + isin(-%)), the —3rd power 1 (cos(-3}) +
i sin(-—:—’;;l)), etc. The Oth power is 1(cos 0 +isin0) = 1, as we expect. The

first three negative powers are at A, B, and C, where we get from each ' C 1
one to the next by rotating by 45° clockwise and halving the distance to B| ™A
the origin.

EXERCISE 9-14 Duplicate Example 9-3 and Example 9-5 for the numbers 2 + % and 1 + 1i.

9.5 DeMoivre’s Theorem

In equation (9.3) we found a very nice property of integral powers of a complex number. However,
we can just as easily look at fractional powers. Consider a complex number which we have written
in the polar form (r, 6). How can we find (r, 6)°/%, where p and q are integers?

To begin with, we get rid of the p. By equation (9.3), we immediately have

(r, 67/ = (+¥, p6)' 4.

Thus our problem boils down to finding the gth roots of (r,p6). This isn’t so hard. We can by
guesswork write down one gth root: (P, p6/q). This is a gth root because its qth power is

(!, p0/9)" = (P11, (p619)) = (r?,p6),
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using equation (9.3). So we have one gth root immediately. How do we find others? Remember that
the complex number (¥, p6) is equal to (¥, p@ + 2ntk) for any integer k; adding a full circle to the angle
doesn’t change our location. From these equivalent numbers we can easily write down the gth roots

(,p/ll, e, ?l") . 9.4)
7 q

In fact, the numbers generated by equation (9.4), as k ranges over the integers, are all the p/q powers
of (r,6). This assertion, the simple proof of which is below, is called DeMoivre’s Theorem (de
MAUVE’s theorem). -

EXAMPLE 9-6 Find all cube roots of 4 + 4 V3i.

Solution: We can readily convert this number into the trigonometric form 8(cos 60° + isin ?00)'
which gives the polar form (8,60°). Then by DeMoivre, the cube roots (1/3 powers) are given
by (8'/3,20° + 360°k/3) = (2,20° + 120°). For k = 0, we have (2,20°). For k = 1, we have
(2,20° + 120°) = (2,140°). For k = 2, we have (2,260°). For k = 3, we have (2,380°), which ?S
equal to (2,20°) again. Similarly, as k takes on other integral values, we will just get our three basic
values over and over again. Thus our roots are (2,20°), (2,140°), and (2, 260°).

EXERCISE 9-15 Find all values of (—4 V2 + 4 V2i)*/4.

Let’s now prove DeMoivre’s Theorem. Clearly every number of the form (9.4) with k an integer
is a p/q power of (r, 6). We verify this by taking the expression to the gth power and observing that
the result is a pth power of (r, 6) in agreement with equation (9.3). Since the expression (9.4) is a qth
root of a pth power of (r, 0), it is a p/q power.

We now need only to prove that every p/q power of (, 6) can be written in the form (9.4). Consider
some general complex number (s, ¢) such that (r, 0)P/1 = (s,¢). We can write (r, 0" = (s, )7, so (9.3)
gives (7,p6) = (s7,q¢). The only way these two sets of polar coordinates can be equal is if

P=sT and pO+2nk=qe,

which clearly forces (s, ¢) to be of the form (9.4), so we're done.

EXAMPLE 9-7 In Example 9-6 above, we found that there are three cube roots of 4 + 4 v3i. This
is no accident. In fact, DeMoivre guarantees that there will be exactly q gth roots of any nonzero
complex number. Why? Because the allowed angles of (7, 6)Y/4 are

_6_ 2nk _ 6 6 2n 6  4n

9 9 499 q9'9 q°

All of these values will be different until we get to k = g, when we will have 6/q + 2nq/q = 6/q + 2m.
This is the same as just 6/9, so we are back where we started: adding 27/q just gives 6/q + 21/q
again, and so on. Similarly, negative values of k give the same roots as well.
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9.6 Exponential Form

We have in De Moivre’s Theorem a very powerful tool for examining the powers of a complex
number. We can make this tool still sharper, however. Consider the powers of the complex number
cos 6 + isin 6. De Moivre’s Theorem tells us that

(cos 6 + isin 0)" = cos(n6) + i sin(n0).
This is a very special property of the function f(8) = cos 6 + i sin 6, namely that
[FO)1" = f(n6).
Which known functions behave like this? Only the exponentials, as in (a*)" = a"*. This possible
connection was closed by Euler, who showed that the usual exponential ¢*, x real, could be extended
to the imaginaries by taking, for any real number y,
¥ =cosy+isiny. (9.5)
We should emphasize that this is neither pure coincidence nor arbitrary choosing. In fact,

students familiar with calculus should be able to prove the necessity of this extension using Taylor
series.

EXAMPLE 9-8 Evaluate the complex number ¢*/2+m/4,

Solution: We split the given expression into the product ¢*/2¢™/4, The first part cannot be
simplified, but the second part becomes 3252 + —l_,é i using (9.5). Thus our number is e3/2(¥ + Azé ).

The relation (9.5) is very useful for the understanding of complex numbers. We define the
exponential form of a complex number to be re’®, where r and 6 are the same as for polar form. In
fact, the exponential form turns out to be just a more powerful way to express polar form. For one
thing, De Moivre’s Theorem is obvious in exponential form, saying that

(reie)n = enie'

Just by writing exponential form, we get De Moivre’s Theorem for free! However, always remember
that if the exponent is not an integer, we must write

(rei(9+2nk))g = 788i0+2nikg

where all the gth powers are achieved by ranging k over the integers.
To write the exponential form of an arbitrary complex number we just find r and  as for polar
form.
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EXAMPLE 9-9 Find i'.

i(n/2+2nk))i =

Solution: It's easy with exponential form. We just write i = e™2*2™), so il = (e

¢~(n/2+2m)_ There are thus infinitely many such powers (!), all of which are real:
=5n -n 3n In
Siag Bt JEE e

This should not be too disturbing, given that even fractional powers give many answers. The reason
this is so weird is that we are using the notion of “powers” very abstractly; we can no longer expect
intuitive results.

We can use this method to take complex powers of any complex number which we can put into
exponential form.

Note that in Example 9-9, we used De Moivre’s Theorem for the complex power i, though the
theorem was proven only for real powers. Fortunately, the theorem still holds for complex powers.
(Can you prove it?)

EXAMPLE 9-10 Equation (9.5) tells us that e = cosx + isinx; substituting —x for x, we similarly
get e = cos(—x) + isin(—x) = cos x — isinx. Adding these two equations and dividing by 2, we get

ex 4 g~ix
cosx = ——,

while subtracting them and dividing by 2i yields
eix - e—ix

2i

sinx =

This is not some kind of trick; these expressions are perfectly valid ways to express sine and cosine,
and are useful in many ways.

EXERCISE 9-16 Use the expressions of Example 9-10 to prove that sin? x + cos? x = 1 and sin 2x =
2sinxcos x.

EXAMPLE 9-11 Using the expressions of the previous example as a basis, we can define two new
functions, the hyperbolic sine and cosine sinh x and cosh x. The functions are defined as

—-—ex e =X
and coshx=21° "
2
The similarity to the expressions given for sine and cosine in Example 9-10 is obvious.

The tie between hyperbolic and ordinary sine and cosine is made still clearer by the fact that the
hyperbolics satisfy similar identities; for example, cosh?x —sinh?x = 1.

sinhx:ex

EXERCISE 9-17 Prove the validity of cosh?x — sinh®x = 1 and investigate formulas for sinh2x,
cosh 2x, etc.
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The hyperbolic tangent, secant, etc. are defined in the familiar way; for example, =
sinhx/ coshx = (¢¥ — e7™¥)/(e* + e7¥).

9.7 Two for One

When we are working with rational variables and functions, the equation f(x) = g(x) is just that, one
equation. Let’s consider the complex variable equation a + bi = ¢ + di. The points in the cog’t}?lex
plane represented by a + bi and ¢ + di can only be the same if 2 = cand b = d, so a + bi = ¢ +di gives
us two equations, not just one. Now let’s look at how this can be useful.

EXAMPLE 9-12 Use DeMoivre’s Theorem to get an expression for cos 36 in terms of cos 6.

Solution: If we write DeMoivre’s Theorem for (cos 8 + isin 8), we have

cos30 +isin30 = (cosB +isin6)’
cos® 6 + 3icos? Osin @ — 3cos Osin? 6 — isin> 6.

To get cos 36, we equate the real parts of the above equation, yielding

cos360 = cos®0—3cosBsin?6
cos® 0 — 3 cos 6(1 — cos? B)
4cos® 6 —3cosh.

EXERCISE 9-18 Find an expression for sin 36 in terms of sin 6.
EXERCISE 9-19 Show that

j j
Im (21«""") = ksinn6.
n=1 n=1

When is this helpful?

Clearly our new technique is very useful for problems involving cos n6 and sin n6.

9.8 The Roots of Unity

DeMoivre’s Theorem can easily be used to find the n nth roots of 1. Since 1 = 2™ for integers k,
the nth roots are given by

. 2 .. 2W 4n 47
1l/n = 2nkifn — 1 cos —= +isin—, €os — +isin—, ...
n

EXERCISE 9-20 Write the three 3rd roots and the four 4th roots of 1 in Cartesian form.
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These nth roots are interesting in anumber of ways. First, we consider plotting
them all in the complex plane. Since all their amplitudes are 1, all the roots lie on
the unit circle. Moreover, their angles are equally spaced from 0 to 27, so they
form a regular polygon! This is shown at right for n = 7. (In fact, the roots of 1
any number form a regular polygon, but this fact is generally most often used for
roots of unity.)

EXERCISE 9-21 For what n is —1 an nth root of 1? For what n does -1 lie on the polygon drawn
above?

EXERCISE 9-22 How many 17th roots of 1 are there in the second quadrant?

Another property of the nth roots of 1 is that they all satisfy the equation
*-1=0.
Since we know 1 is a root, (x — 1) divides the polynomial on the left, which we can then factor as
=-DE"1+x"24...41)=0.

For any root w # 1, we thus have

n-1 2

WO+ +1 =0,

a relation which is useful for many problems.

EXAMPLE 9-13 If w is one of the imaginary roots of the equation x> = 1, then find the product
(1 -w+ w1 + w — w?). (AHSME 1971)

Solution: Writing the given equation as x> — 1 = 0, we factor and find (x — 1)(x2 + x + 1) = 0.
Since w is imaginary, it is a root of x> + x + 1, s0 @? + @ + 1 = 0. Hence we have 1 + @ = —w? and
1+w?=-wand

l-w+?)1+w-0?) =(-w- w)(~a? - ?) = 40® = 4,

since > = 1.

Problems to Solve for Chapter 9

141. Find |52, (Mae 1001)

142. Find (1 + i)*(2 - 2i)>. (MA® 1987)
143. Find the product of the n nth roots of 1 in terms of n.

144. If f(z) = 2L, then find f1%1(2 + i). (MA® 1991)

z-1’

145. For how many positive real values of K will (2 + Ki)® be a real number? (MA® 1992)

146. Show the line through the complex points w and z plotted in the complex plane has slope
Im(z — w)/ Re(z — w).
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147. The diagram at right shows several numbers in the complex plane. The Fe
circle is the unit circle centered at the origin. Which of the shown points could D
possibly be the reciprocal of F? (AHSME 1983) :

g
148. If the six solutions of x® = —64 are written in the form a + bi, where 2 and b &
are real, then find the product of those solutions with a > 0. (AHSME 1990)

Ee

149. What is the graph of |z = Im z + 1? (MA® 1991)
150. Write cos 50 as a function of cos 8. (MA® 1990)
151. Find Im((cos 12° + isin 12° + cos 48° + isin 48°)°).

‘§>\ 152. If 6 is a constant such that 0 < 6 < m and x + 1 = 2cos 6, then for each positive integer 7, find
x" + L in terms of n and 6. (AHSME 1981)
153. Evaluate

>, cos(n6)

Z on 7

n=0
where cos 6 = 1/5. (MA© 1991)

§>\ 154. Suppose that the coefficients of the equation x" +a,-1x""" +- - +a1x + a9 = 0 are real and satisfy
0<ag<a <---<ay <1. Letzbeacomplex root of the equation with |z| > 1. Show that z**1 = 1.
(This problem originally appeared on a contest used to determine the Chinese national team.) (MOP)

the ART of PROBLEM SOLVING: Volume 2 < 99

——the BIG PICTURE

Carl Friedrich Gauss was, among his many other achievements, one of the primary popu-
larizers of complex numbers. One of the discoveries of which Gauss himself was proudest was
the constructibility of the regular 17-gon.

- The ancient Greeks were able to construct the equilateral triangle, and the regular pentagon,
but no other regular polygons with a prime number of sides, but Gauss was at last able
to extend this repertory. Given a segment of length 1, Gauss knew that any integer-length
segment could be constructed. Moreover, the sum, difference and quotient of two segments
can be constructed, and the square root of a segment can be constructed. Thus any segment
whose length is an expression made up of sums, differences, quotients, and square roots of
integers can be constructed.

As a simple example of such an expression, Gauss used the 17 seventeenth roots of unity to
show that

1
c0s360°/17 = —11—6 + 11—6\/ﬁ+ E\/34—2\/1_7
+%\/17+3\/1_7'— V34— 2V17 -2 V34 + 2V17.

Once he could construct a segment of length cos 360°/17, Gauss could construct the point
(cos 360°/17, sin 360°/17), by laying off cos 360°/17 along the x axis and drawing a perpendicu-
lar to the x axis at that point. The intersection, P, of this line and the unit circle has polar angle
360°/17; copying the angle between the positive x axis and OP (O is the origin) seventeen times
around the unit circle provides the seventeen vertices of a 17-gon.

Gauss’s construction of the 17-gon is one of the most compelling examples of the geometry of
complex numbers, and Gauss asked that his tombstone be made in the shape of this wonderful,
constructible polygon.
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Chapter 10

Vectors and Matrices

10.1 Whatis a Vector?

or, abstractly, even more dimensions. A vector is typically given a variable-type
name, like v, and is denoted by 7. Also, the base point of a vector is called the tail
and the end of the arrow the head.

A vector is simply an arrow from one point to another. For example, at right \
we have drawn some vectors in two dimensions (2D). Vectors can also be in three )\\

The length of the vector # (distance from tail to head) is denoted by |I7)l. A vector
is typically regarded as depending only on its length and direction; the location of the
starting point of the arrow is immaterial. Since the starting point doesn’t matter, we
can “add” two vectors by moving the tail of one vector to the head of the other, as at

left, where the boldface vector is the sum of the other two.

We can easily verify that vector addition defined in this way is commutative, 7]
so that 7 + @ = @ + 7. Just draw the two additions and note that the two copies
each of 7 and @ are parallel, as at right. 7
Using our definition of vector addition we can quickly expand to multipli-
cation by a positive real number: the vector ¢7 for c a positive real is the vector
in the same direction as 7 but with length ¢||#|. (Convince yourself that this
makes sense.) The vector 0 is defined to be the vector with length zero.

<y

Similarly, the vector -/ is just a vector with the same length as 7, but in
the opposite direction. This way we get 7 + (-%) = §, as we would normally
expect. We can then define @ — 7 = @ + (-7), and we see from the diagram
that @ — 7' is the vector that runs from the head of ¥ to the head of @. This
should not be a surprise since 7 + (@ — 9) = @ + (7 - 9) = .

< 100 »
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10.2 The Dot Product
The length of the vector @ — # can be found using the law of cosines. Since 7, @, B3
and @ — ¥ form a triangle whose sides have lengths ||, ||, and |/ - 71|, we have 7
Il — AP = I[P + I — 2/l cos 6, (10.1) z

where 6 is the angle between 7 and .
The expression ||3||@]| cos 6 is called the dot product of #and ; it is denoted by 7-w. We can
then write (10.1) as
18 — A = I + I — 27 - @,

so that the dot product is given explicitly as

1% + Ilu‘)llz2 — i - AP (10.2)

F.@=

We can establish certain nice properties of the dot product.

1. ¢-@ =@-7. (The dot product is commutative.)

- = 0 if and only if # and @ are perpendicular.

<

2
3. (c?)- W = c(7- W) for any real number c.
4

. #-(@+ W) =i-7+i-w. (The dot product is distributive.)

EXAMPLE 10-1 Prove property 1 above.

Proof: Let 6 _ »be the angle from @ to 7, so that Oz 7= —Op_5 Now we just write

@ -7 = @Al cos O _ z = 1Al cos(=6z._, ) = 1AMl cos(6z_, ) = 7,

where we have used the fact that cos(-0) = cos 6.

EXERCISE 10-1 Prove properties 2 and 3 above.

Property 4 is proved using coordinates in the next section (see Example 10-2).

Properties 3 and 4 mean that the dot product is linear.

The use of vectors as abstract “arrows” is most useful in vector geometry, which we do not treat
until Chapter 12. In the next section we will begin to examine vectors in a particular coordinate
system, which is more pertinent to elementary problems.
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10.3 Coordinate Representation of Vectors

The standard way to represent vectors in a coordinate system is Y]
to define an origin and place the tails of our vectors there. We can T
then use regular rectangular coordinates with the given origin at the 1.3
center, as at right. We associate a vector with the coordinates of its 4!
head; if the head coordinates are (x, y), the vector is represented as 7

..........

X .
(x y) or (y) - The former representation is called a row vector and
the latter a column vector. We'll generally use row vectors because 5
they take up less space. (~5,=3)
The power of the coordinate representation comes from the fact
that we can use regular coordinate techniques. For example, the
vectorsum (x; y1) + (x2 y2) isjust

(1 +x2) (y1+y2).

EXERCISE 10-2 What is the length of the vector (2 3) ?

In the rectangular coordinate form, the dot product has a nice form. Consider two vectors
0 = (xl yl) and 7, = (xz _1/2) which form angles 8; and 6, with the positive x axis. Their dot
product is found using polar coordinates:

o - = [G1llllT2ll cos(6y — 62)

||51||||52||(COS 0, cos B, + sin 01 sin 03)

(1171l cos 61)(|I72l cos B2) + (||l sin 61)(||Z2ll sin 62)
x1x2 + Y1y2.

EXAMPLE 10-2 Prove that the dot product is distributive.
Proof: Let i = (xo ), 7= (x1 y1), and @ = (x2 ¥2). We have
- (7 +®) = xo(x1 +x2) + Yo(y1 + y2) = (ox1 + Yoy1) + (Xox2 + yoy2) = (i7" 9) + (i7" ),

as desired.

We can easily extend the coordinate representation into three (or more) dimensions. The dot
product in three dimensions (3D) is
x1x2 + Y1y2 + 2122,

and a similar expression holds in higher dimensions, even though we run out of letters.

EXERCISE 10-3 Show that (1 17 -3 2) is perpendicularto (<6 1 5 2),
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The notion of vector addition gives us a swift, nice proof of the Triangle w
Inequality for complex numbers (page 90). If we view 7 and W as complex
numbers v and w, so that 7 = (v1 vz) = v; +vzi and ||7])| = [v], the graph at right
represents the addition v + w in the complex plane. Since the vectors 7, w, and
7 + @ form either a triangle or a straight line (when 7 and @ are in the same —
direction), we have [|?| + ||| > ||7+ || (since |||, [I]l, and [|7 + @| are the sides W
of a triangle, which may be degenerate). In complex number notation, this becomes [v] + IZi)I > v+ wlL
and the equality condition of v = cw follows from the observation that ||| + [|&]| = [|7 + @l only if 7
and @ are in the same direction, so v; = cw; and v; = cw,.

<y

S

10.4 What is a Matrix?

To understand what a matrix is, we will solve the following standard problem:

Given a point (x,y), what is the new point obtained after rotating (x, y) by an angle 0 in
the plane?

We can do this using polar coordinates as we did on page 49. Here, we will rotate the point, not the
axes, through an angle of 6 counterclockwise. If the polar coordinates of the point are initially (7, ),
then after the rotation the coordinates are (r,  + 8). Then we can go back to rectangular coordinates.
Let’s call the new coordinates (x’, y’); thus, we find

X =rcos(@a+6) = r(cosacosB —sinasinb)
y =rsin(@+6) = r(sinacosB + cosasin 6).

Since rcosa = x and rsina = y we can write these in terms of the original coordinates:
X

(Notice that these equations are different from those on page 49. This is because here we are rotating
the point counterclockwise rather than the axes. We can see that the above equations are the same of
those by noting that a on page 49 equals —6 here.) We have boiled the rotation down to a function
from the old coordinates to the new coordinates. The functions for x’ and y’ are linear in x and v,
so they are completely specified by four coefficients; we can use this to develop an efficient notation
for the transformation.

xcos6 —ysinO
xsin @ + ycos 6. (10.3)

If we write the old and new points as the vectors (x) and (;,), then we can encapsulate the

information in the transformation equations (10.3) with the form
X'\ _ (cos6@ —sinB) (x
y) \sin@ cos6 )\y)- (10.4)

Compare this closely to (10.3). The object by which we “multiply” the vector ; is a matrix; each
item in it is called an entry. Each entry corresponds to a particular coefficient in equations (10.3), as
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a comparison shows. The upper left entry is the coefficient from x to x’, the upper right is from y to

x’, the lower left is from x to y’, and the lower right is from y to y". . '

We have gone from regarding the transformation (10.3) as transforming each coordinate accord1.ng
to an equation, to seeing it as the application of a transformation matrix to a vector. Let us examine
the method by which, given only the right side of (10.4), we can get the left. In other words, g1ve;1
only the initial vector and the transformation matrix, how do we compute the transformed vectgr.

The answer is quite simple. To compute the first element of the new ve?ctor, we go across the first
row of the matrix, multiplying the elements of the row by the corresponding elements of the vector.
The resulting sum is the first element of the new vector. To compute the second element, we do the
same with the second row of the matrix.

a
EXAMPLE 10-3 Let’s carry out the process described above to multiply the vector (b) by the

4 5
matrix and down the vector to get (2)(a) + (3)(b). The second element is formed with the second row
of the matrix, going down the vector as before to get (4)(a) + (5)(b)- Thus we have

(5)6)-(5):

4\ (1
EXERCISE 104 Find the product ( 2 8) (_1).

matrix (2 3). The first element of the product will be found by going across the top row of the

EXERCISE 10-5
i. What is the effect of the matrix ((1) _01) on a general vector? Geometrically, what kind of a

transformation is this?
ii. Find the matrix which takes any vector to itself. This is called the identity matrix.

jii. Can you guess what matrix multiplication looks like for 3D vectors?

Matrices are often named with letters, like vectors. Usually these are underlined, so the matrix
named A is written A. It is easy to verify that matrix multiplication of a vector is linear, meaning
that A(? + @) = A7+ A@ and A(c?) = cA7. sl

EXERCISE 10-6 Verify that matrix multiplication of a vector is linear.

10.5 Matrix Multiplication

Once we understand the role of matrices as transformations of vectors, we can ask: what happens

3 : 1
when we apply two transformations in a row? Say we have the vector (l)' and we apply first the
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. (3 -4 . (-1 2 .
matrix (5 . 6) , then the matrix ( 3 _ 4> . The result will be

GAEIO)

EXERCISE 10-7 1If you still feel uncomfortable with multiplying a vector by a matrix, evaluate the
above product explicitly.

Applying the matrices one at a time is fine; but suppose we wish to consider the two transfor-
mations as one, composite transformation? That is, we want to find a matrix C such that

G DE D66

-1 2\ /(3 -4
We shall define “matrix multiplication” so that the above holds with C = ( 31 N 4) (5 —6) , the

product of the two matrices.
How shall we define this product matrix C? In general we have

EAEDO] - € DGR
(a(ex + fy) + b(gx + hy))
clex + fy) +d(gx + hy)

(ae + bg)x + (af + bh)y
(ce +dg)x + (cf +dh)y

ae+bg af +bh\ (x
ce+dg cf+dh) \y)"

. b . b
We shall thus define the product (i d) <§ £> to be the matrix (z: : dg g I ZZ) ; theneverything

will work nicely.

If this seems like a rigged game, it is! We have chosen matrix multiplication so that it means
something we want. Observe that the way to do matrix multiplication is the same as when we
multiplied a vector by a matrix. In fact, if we consider only the first column of ; {;) and the first
column of the product, we have matrix multiplication of a vector; the same is true for the second
columns.

. (-1 2\ (3 -4
EXAMPLE 10-4 1=md(3 _4> (5 _6>.

Solution: To get the top left entry in the product, we go across the top row of the first ma-
trix and down the left column of the second, to get (~1)(3) + (2)(5) = 7. To get the top right entry,
we go across the top row of the first matrix and down the right column of the second, getting
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(=1)(-4) + (2)(-6) = 8. To get the bottom left, we go across the bottom row of the first matrix and
down the left column, getting (3)(3) + (—4)(5) = ~11. To get the bottom right, we use the bottom
row of the first matrix and the right column of the second, to get (3)(—4) + (-4)(-=6) = 12. Thus the

product is (—il Ig)
EXERCISE 10-8 Verify that column by column, matrix multiplication of matrices looks just like
matrix multiplication of vectors.

0 -1 5
EXAMPLE 10-5 By equation (10.4), a 90° counterclockwise rotation is given by (l 0 ), and a 180

: -1 ;
rotation by ( 0 _01> . Doing one and then the other gives the transformation

-1 0)\/0 -1
0 -1)\1 0/)°
To find the upper left entry in the product, go across the first row of (—01

0 -1
1 0
first matrix, but down the second column of the second, to get (—1)(—1) + (0)(0) = 1. For the bottom
entries we do the same thing, but going across the second row of the first matrix. The result is

(5 o)

EXERCISE 10-9 To what rotation does the product above correspond? Is this what you would
expect?

0

-—l) and down the first

column of ( ) to get (—1)(0) + (0)(1) = 0. For the upper right, go across the same row of the

2 -3\(11
EXERCISE 10-10 Evaluate (_4 5) (2 3).

EXERCISE 10-11 Geometrically, what do you get when you reflect through the x axis and then
through the y axis? Show you get the right result in matrices by multiplying the matrix for x

-1 0
1

reflection, ( 0 ), by the matrix for y reflection.

Since matrix multiplication is associative, A(BC) = (AB)C. We usually just write ABC and do the
% multiplication in whichever order we want. -
‘{ WARNING: It seems sensible that matrix multiplication would be commutative, so that AB = BA.
However, this is NOT true!

EXERCISE 10-12 Show that matrix multiplication is not commutative by finding a simple coun-
terexample.

Since we can multiply matrices, we can also take them to positive integral powers, just writing
AAAA as A*, for example.
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EXERCISE 10-13 Write down a matrix A for a rotation by 60°. Find A® without any computation.

10.6 Matrices in Higher Dimensions

A 2 x 2 matrix has been used to represent a transformation from one 2D vector
to another. If you thought about Exercise 10-5, you may have figured out how
to extend this to 3D vectors. In three dimensional space each point has an x and
y coordinate as in 2D, but also has a z coordinate to denote its distance above or ?
below the xy plane. The positive x, y, and z axes are situated as shown.

Here a transformation from a vector (x y z) toa vector (x v z’) has the “x
form x’ = ax + by + cz, etc. There are nine coefficients to the transformation, that from x to x’, from
y to X, from z to x’, from x to ¥/, etc. (compare this to the discussion of 2 X 2 matrix entries on
page 104.) We represent the coefficients in exactly the same way as for 2D matrices.

EXERCISE 10-14 Write down the 3 x 3 identity matrix.

EXAMPLE 10-6 We can easily write down the 3 x 3 matrix for a rotation by angle 6 about the z axis.
Clearly, the new z coordinate is the same as the old z coordinate, so the coefficient from z to z" is 1,
while the coefficients from x and y to z’ are 0 (no contribution). Also, neither x’ nor y’ is affected
by z, so these two coefficients are 0. Finally, the other coefficients come from the standard rotation
matrix of equation (10.4). The matrix is thus

cos@ -sinf 0
sin@ cos@ 0 |.
0 0 1

EXERCISE 10-15 Find the 3 x 3 matrix for each of the following:
i. Rotation about the x axis.
ii. Squashing all vectors to 0, the origin.
iii. Reflection in the xy plane.

It is pretty simple to show that 3 X 3 matrices work the same as 2 X 2’s in terms of associativity,

noncommutativity, etc.

Since we can imagine vectors of more than 3 dimensions, we can similarly write down matrices
which transform those vectors, such as 4 X 4, 5 X 5, etc. We can even write down matrices which are
not square! For example, a 2 X 3 matrix (number of rows goes first) takes 3D vectors to 2D ones:

a
123 _(a+2b+3c
(4 5 6) IC’ _<4a+5b+6c>' (10.5)

All you need to remember is that to find an entry in the product, we go across the corresponding
row and down the corresponding column. Study the above example if this is still unclear.
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- EXERCISE 10-16 Write down and multiply:
i. Two 3 X 3 matrices.
ii. A2X4and a4 x 3 matrix.

iii. A1x3and a3 x1matrix. (To what does this correspond?) Compare the dimensions of the
products to the dimensions of the original matrices in these three cases. Is there a pattern?

It seems strange, but only under certain circumstances can we multiply a k X Imatrixbyanm Xn
matrix. To see why, let the first matrix be A and the second B.

EXAMPLE 10-7 Consider the multiplication A¥. Find the dimensions of ¥and A%, where Aisa kX1
matrix.

Solution: In the multiplication we will be going across rows of A and down %. Since A has
I columns, each of its rows is I entries long. Thus ¥ has [ entries also, so is dimension /.
On the other hand, there will be one entry in the product A¥ for each row of A, as each entry in

the product is formed by going across one row of A. Thus the product will have k entries, so will be
dimension k.

EXERCISE 10-17 Compare the preceding discussion to equation (10.5). Do the two agree?

For vectors ¥ we have (AB)X = A(B%), by associativity. Clearly ¥ must be an n-dimensional vector
if B, which takes n-dimensional vectors to m-dimensional ones, can transform it. The product B
will be m-dimensional. But this product must be /-dimensional to be transformed by A! Thus we
must have m = I

Furthermore, the dimension of ABX will be k, since A was used last and its outputs are k-
dimensional. Thus the product AB takes n-dimensional vectors to k-dimensional ones, and must be
a k X n matrix. It is this pattern that we were looking for in Exercise 10-16—go back and verify that
it is true in those cases if you have not already.

10.7 Better Matrix Notation

; s a b
Up to now we have written a general 2 X 2 matrix as A = (c d)' A better way to write this is by

labelling each entry by its row and column numbers. We would then write

a1 a2
A= .
4 ( an azz> (10.6)

‘J WARNING: As always with matrices, ROWS GO FIRST—for example, ay; is an entry in the fourth
row, second column of A, not the other way around.

We'll often use the a;; notation because it is very efficient.
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EXAMPLE 10-8 The 3 X 3 identity matrix is completely specified in this notation by
_J1, i=j
Do you see why?

EXAMPLE 10-9 The product rule takes a nice form in this notation. Given AB = C, with Aan I xm
matrix, B an m X n, and C therefore a I X n, we have

C,‘" = aﬂb]i + aabzl' A o a,‘mb,,,}',
or to compress even more,
m
cij = > aubyj.
k=1

If these expressions are unclear, write A and B in the form (10.6) and multiply out to see. Try starting
with small values, likel =2, m =3, n = 4.

0 1 2
EXERCISE 10-18 Express the matrix <—1 0 9 in the manner of Example 10-8.
-2 -1 0

Problems to Solve for Chapter 10

155. Write down the 2D matrix for a rotation by 45°.

156. Show how the multiplication of rotation matrices can be used to remember the trig identities
sin(x + y) = sinxcos y + sin y cos x and cos(x + y) = cos xcos y — sin x sin y.

21 9 -2 11 -1
-6 0 -3 4 4 -3|.
1. 3 2 3 2 1

158. Three vertices of parallelogram PQRS are P(-3,-2), Q(1,-5), R(9,1) with P and R diagonally
opposite. What is coordinate S? (AHSME 1963)

157. Find the product

159. Find the cosine of the angle between the vectors (3 4 5)and (-1 4 3).

160. Matrix A has two rows, three columns. Matrix B has four rows, two columns. The existing
product of these two matrices consists of how many elements? (MA® 1992)

(¢ 7)

161. Let A be the matrix
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and let x be the sum of the entries of a matrix B such that AB = BA. Find the smallest value of x over
all matrices B whose entries are positive integers. (Mandelbrot #3)

3 1 4 1
162. What is the image of (l) under the mapping <—-2 0 0 ) ? (MAO 1991)
2 3 2 -3

§\ 163. Find min f and max f where x and y are real numbers and

f(x,y) = 2sinxcos y + 3sinxsiny + 6 cos x.

(M&IQ 1991)

the ART of PROBLEM SOLVING: Volume 2 < 111

——the BIG PICTURE

Imagine an atom (particle of matter) sitting in space. There are many possible “states” the
atom could be in: vibrating fast or slow, spinning around in different ways, and so on. But_ as
we pointed out in a BIG PICTURE in Volume 1, quantum mechanics can't tell us e_x.actly which
state the atom is in, just the probabilities of its being in each state. These probabilities are oft.en
thought of as a vector, P= (P, P, P3 +++), where P; is the probability of being in the ith
state. So far we're on solid ground. But what if the atom has infinitely many possible states?
Suddenly our vector has become infinite-dimensional!

Now imagine a particle of light—a photon—flies onto the scene and our atom absorbs it.
This will cause our atom to switch from its initial state to some other state. How do we kno_w
what other state? We don’t! Again, we only know the probabilities. If the atom started in
state i, there is some probability A;_,; that it ends up in state 1, some probability Ai-> that it
ends up in state 2, and so on. (What does A;_,; represent?) Our original probability vector
P thus transforms into a new probability vector é, which describes the probabilities after the
absorption. How do we transform one vector to another? With a matrix, of course! We define
a transition matrix A, so that Aﬁ = Q:

A1 Ay e Py Q1
<A1-.2 Arn ) <P2> = Q.

If you are familiar with the rules of probability, you might be able to understand this in more
depth. Why, for example, is Q, the probability we end up in state 1, equal to PyA,1 +P2A> 1 +
P3A3,1 +---? Can you see that we musthave Py + P + P3 +--- = Q1 + Q2+ Q3 +--- =1?

To calculate the probability vectors and transition matrices takes some doing, but the math-

ematical apparatus of the infinite dimensional vectors involved is more or less the same as that
for the humble 2D vectors we define in the text.

Chapter 11 Cross Products and Determinants
Page 112

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

Chapter 11

Cross Products and Determinants

11.1 The Cross Product

We have seen in Chapter 10 that there is a connection between the dot product and vector lengths.
We now define a special product between vectors which allows us to discuss areas.

So, given two 3D vectors 7 and @, we shall define the cross product 7' X @
to be the vector ¥ such that

> ¥ is perpendicular to both 7 and @ (so that #- 7 = ¥+ @ = 0);

> the length of X is the area of the parallelogram spanned by 7 and @, as in
the figure at right.

EXAMPLE 11-1 For any vectors 7 and @, we have (7 x @) - 7 = 0, since we have defined the cross
product to be such that (7 x @) L 7.

EXERCISE 11-1 What is the area of the parallelogram spanned by ¥ and @ in terms of ||, |||, and
6, the angle between the two vectors?

Given vectors 7 and @, there are two vectors which satisfy our criteria for the cross product, one
which points ‘up’ from the plane containing 7 and @ and another which points ‘down’ from the
plane. How do we know which vector is & x @? There’s no sound mathematical reason to choose
one or the other, so we must adopt a convention which we can apply to any pair of vectors.

This brings us to the dreaded right hand rule. This is nothing more than a way to remember in
which of the two possible directions we choose our cross product to be.

> Consider the equation 7 x @ = ¥. If you extend the index finger of your right hand along 7

and the middle finger along @, then ¥ will be along your thumb pointing perpendicular to the
other two fingers.

EXAMPLE 11-2 Ifwetake#= (0 1 0)and@=(1 0 0), then find #x .

Solution: Take the desired vector to be ¥ = (a b c). Then the dot products of ¥ with 7
and @ are b and a respectively; by the first condition on the cross product these must both equal zero,

soX = (0 0 c). By the second condition, the length ||7]| = |c| must be 1 (why?), so that c is +1. The
right hand rule tells us that ¥ is pointing down, so ¥ = (0 0 -1).

4 112 »
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EXERCISE 11-2 As ¥ stays fixed and @ rotates in a full circle, describe the path followed by the tip 5\
of 7 X .
EXERCISE 11-3 Using the right hand rule, find the relationship between #x @ and @ X 7.

WARNING: Exercise 11-3 shows an important difference between the cross product a_‘nd gther ‘/
products with which you are familiar. The cross product is NOT commutative; that is, 7x @ # @ X 7.

11.2 The Cross Product in Coordinates

Like the dot product, the cross product takes on a fairly simple form in the coordinate representation.
Ifwetake#= (x1 y1 z1)and@=(x2 y2 z2), then itcan be shown that the vector

IxW = ((y122 - y221) (@1x2—22%1) (12— x2y1)) (11.1)

has the desired properties. Since we have seen that there is only one vector satisfying all three
defining conditions, this must be the desired cross product.

EXERCISE 11-4 Show that the vector # x @ defined in (11.1) is perpendicular to both #and .

Although the cross product is not commutative, it is still linear, so 7% (@ + @) = (X W)+ (FxW2)
and 7 x (c@) = c(F x ). These properties can be easily verified using (11.1).

When we take the cross product of two vectors which are only two dimensional, we extend to
three dimensions: we pretend that our vectors are actually three dimensional, with a z-component
of 0. So if the vectors are (x1 yl) and (11 yz), we write them as (x1 V1 0) and (x1 Y2 O),
tacking on a component of zero in the third dimension. We can then use (11.1).

EXERCISE 11-5 Use (11.1) to verify that the cross product of two 2D vectors points either straight
up or straight down (in three dimensions).

11.3 The Determinant

We are now able to ask (and answer) a question which has been hanging about since the introduction
of matrices, namely, is there a “size” for matrices? The size of a vector is simply its length. For
matrices, however, the size depends on area, which we are only now ready to tackle.

A very common way to represent a vector is to break it down in terms of the fundamental unit

vectors i = (1 0) and f: (0 l): (a b) =ai+ bf.' (Similarly, in 3D we have (a b c) =ai+ bf‘+ ck,

where k = (0 0 1).) Let us thus examine the action of a general 2D matrix A = (Z; :Z) on the

unit vectors i and ]7.' We find

Al= (" o (1 =<¢111> and Aj= (ﬂu ﬂlz) <O)= az)
an axn) \0 a21 ay ap) \1 ax
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Originally, fand f spanned a parallelogram (square) of area 1. After transforming by A, the vectors
span a parallelogram of area
(m) % <a12)
a1 a2

The quantity a11a2; — 2122 (no absolute value bars) is called the determinant of the 2D matrix A,
and is written |A| or det A. The determinant is thus the amount by which the area of the unit square
is multiplied under transformation by A. Since |A| = a11a22 — 412421, we see that the determinant of a
matrix can be negative. To what does this correspond? Since we've used cross products to find our
determinant form, perhaps this sign change can be explained by them. A quick comparison of |A|
to the cross product (A_fﬁ X (A )-5 reveals that a negative determinant corresponds to a matrix which
reverses the direction of the cross product of two vectors. (Compare ix ]?to (/_ﬁ) X (A 1'3. When are
they in the same direction? Opposite directions?)

How does the area of any other parallelogram change? Such a parallelogram is spanned by some

— " . . ¥ 7 4 d = g
two vectors ' and @; these vectors can be written as linear combinations v;i + v2j and wii + wyj,
where vy, v, wy, and w; are real numbers.

|ahx @] =

H = lﬂnazz —fllzazl|-

EXERCISE 11-6 Find the area of the parallelogram spanned by # and @ in terms of vy, v2, wy, and
ws. ’

Under transformation by A, 7 and 0 become AT + A f and w1 AT + waA ]:: using the linearity of

matrix multiplication. The area of the parallelogram spanned by these transformed vectors is then
the absolute value of '

(AT + 0Af) X (W, AT + wAj),
which by the linearity of the cross product is

(1w — wy2)(ATX AJ) + viw1 (AT X AT + v;wa (A% AJ. 11.2)

@é EXERCISE 11-7 It looks like the coefficient of the first term in (11.2) should be V1Ww2 + Wy, but
we've written v w; — wyv2. Where does the — sign come from?

EXERCISE 11-8 Prove that #x # = 0 for any vector 7,

Using Exercise 11-8, equation (11.2) is simplified to

(©1w2 — 0201 )(AT X AJf = |Al(01102 — v )R, (11.3)

which has a magnitude of |A| times the original area of the parallelo
parallelogram is multiplied by |A| when transformed by A. (Again,
parallelogram is ‘flipped” by A. Compare (11.3) to our descriptio
cross products.) Even more strongly, since any area can be thou
parallelograms, any area at all is multiplied by |A|.

gram! Thus the area of any
negative |A| means the original
n of negative determinants and
ght of as being covered by tiny little
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1 3
Solution: The determinant is (-2)(3) — (2)(1) = -8.
EXERCISE 11-9 Consider the rectangle formed by the points (2,7), (2,6), (4,7), and (4,6). Is it still a

EXAMPLE 11-3 Find the determinant of (‘2 2)_

rectangle after transformation by (; - ) ? By what factor has its area changed?

5
EXERCISE 11-10 The circle with center (-1,3) and radius 2 is transformed into some figure C by

the matrix (__23 ‘11) . Find the area of C.

The determinant is, it seems, a measure of how much a matrix stretches or squishes areas. What
happens if we successively apply the transformations A and then B? First an area K is multiplied by
|A], then by |B|, so the final area is |B| |A|K. On the other hand, we saw in Chapter 10 that we can view
the successive transformations as a single, overall transformation BA. Thus the area Kis transformed
to [BAIK. Since the way of looking at the transformation (two separate or one compound) doesn’t
affect the final area, we must thus have
[BA| = |B|A| (E

\l/

for any two matrices A and B.

EXERCISE 11-11 Find the determinant of the product
2 =3\ (-5 1\/2 6
7 -4 3 -1/\0 -4/

11.4 Determinants in Higher Dimensions

Determinants in dimensions greater than 2 can be defined by analogy. For example, the determinant
of a 3 x 3 matrix is the amount by which the matrix stretches or squeezes volumes. The determinant

of a general 3 X 3 matrix
a1 42 M3
axn Az a2
A3 Aaz; 4z
turns out (after some none-too-pleasant analytic geometry) to be

11422033 + A12823431 + 413321432 — (1221433 — (13022031 — A11a23032.

As you can see, each three-term product contains one and only one element from each row and
column; in fact, the sum contains all three-term products which satisfy this criterion. All that's left
to understand is those strange +’s and —’s. Note that in each set of three the first indices are 1, 2, and
3 in that order, so the sign is determined from the second indices. In fact, if the order of the second
indices is one switch away from the ordering 1,2, 3 (e.g. 1,2,3 — 2,1, 3) then the sign is —, and if it
requires zero or two switches (e.g. 1,2,3 — 2,1,3 — 2,3, 1) then the sign is +.
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EXAMPLE 114 We can use a simple shorthand to compute 3 X 3 determinants. Consider the
determinant

1 8 -2

3 4 9

5 -3 8

(Note that the matrix is enclosed by vertical bars, rather than parentheses, to indicate the determi-
nant.) We copy the first two columns on the other side of the bar, as:

1 8 2,1 8
3 4 9 3 4
5 -3 8 5 -3

We can now get the determinant by forming products along all the long diagonals of this grid. We
add the products up, giving a + sign to those going down and to the right and a — sign to those going
up and to the right. In this case, the diagonals going down yield (1)(-4)(8) = =32, (8)(9)(5) = 360, and
(=2)(3)(=3) = 18. The diagonals going up, with their — signs, yield —(5)(-4)(-2) = -40, -(-3)(9)(1) =
27, and —(8)(3)(8) = —192. Adding up all these terms gives —32 + 360 + 18 — 40 + 27 — 192 = 141 as
the determinant.

EXERCISE 11-12 Prove that the shorthand developed above works.

EXERCISE 11-13 Prove that multiplying all the entries in one row of the 3 x 3 matrix A by ¢ yields
a matrix with determinant c|A].

EXERCISE 11-14 Matrix B is formed by multiplying all elements of the 3 X 3 matrix A by ¢. Find
the determinant |B| in terms of |Al.

11.5 Minors

We have seen that there are simple forms for the 2 X 2 and 3 X 3 determinants. But what of the more
complicated matrices of higher dimension? We start from the 3 x 3 determinant of matrix A

a;; 412 413
ay ar A4z
as 4ax» 4z

= anaras — 411423432 + 412423431 — 412821433 + 413021432 — 413022431 .

Observe that the form of this determinant allows it to be broken down as

1Al = an(anazs —a23a3) — a12(a21433 — 43431) + 413(a21832 — a22a31)
arp ax ay ax3 an ax
= an —Aan +m .
azy as3 a3 4z a3 asx

The 3 x 3 determinant can be evaluated solely in terms of 2x 2 determinants! (Verify this by
inspection.) In fact, we can write this in other ways as well:

a2
a3 axn

a a
11 12 +a
a3 a3

a11 412
a1 ax

a13
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or
|12 @3 an Mm3| _ (411 412
a3z a3 a3 a33 a3 az|’

to write two. (Verify these.) What are these forms? For each we have picked a row or column, and
for each entry in the row or column multiplied the entry by the matrix formed by simply crossing
out both the row and column in which the entry sits.

EXERCISE 11-15 The one thing left out of the discussion is the signs preceding the terms in the
sums. Can you figure out how these signs are chosen?

We can immediately extend our observations to the case of any n X n matrix.

The step-by-step method to evaluate the determinant of any matrix.
1. Given an n X n matrix A, go along any row or column, entry by entry.

2. For each entry aj in the row or column, find the determinant of the (n — 1) X (n — 1) matrix
formed by crossing out the ith row and jth column of A. Call this matrix A;;.

3. The determinant of A is the sum of (—1)"*/a;j|A;;| for the entries in the chosen row or column.

This method is called expansion by minors, where the minors are the submatrices A;]- formed
by crossing out the ith row and the jth column. Always remember to add the correct signs to the
terms, as denoted by the (=1)"*/ term in the sum.

EXERCISE 11-16 What does the matrix a;; = (-1)*/ look like?

EXERCISE 11-17 We have seen by example that our method works for the 3 x 3 case. Show that it
also works in the 2 X 2 case.

EXAMPLE 11-5 To make sure the explanation is clear, let’s use minors on the 4 x 4 matrix

1 38 :5 7
210 -1
2 46 8
6 53 2

Let’s use the third column, to make use of the 0. The expansion is

21 A 137 13 7 13 7
52 4 8|-0/2 4 8/+6/12 1 -1|-312 1 -1f.
6 5 2 6 5 2 6:<5. 2 2 4 8

Evaluating the 3 x 3's this is 5(—6) — 0(something) + 6(5) — 3(0) = 0.

EXERCISE 11-18 Write down a 3 X 3 determinant and evaluate it using expansion by minors.
Evaluate it using the shortcut method to check your work.
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N\

J

EXERCISE 11-19 Use minors to evaluate the determinant of the diagonal matrix

aa 0 0 - O
0 agp 0 = 0
0 0 0 e ﬂ"n

&

EXERCISE 11-20 How about of the triangular matrix

an 0 0 - 0
ay axp 0 - 0

. ?
Anl An2 p3 *c* Apn

EXERCISE 11-21 Prove that any matrix with a row or column made up of all 0's has determinant 0.

It is important to realize that minors only gives us a way to go from an n X n determinant to n
(n—1) X (n - 1) determinants. Thus it is not perfect—to do a 6 x 6 matrix by the minors method
would mean doing 6 5 x 5’s, or 30 4 X 4’s, or 120 3 x 3's (which we could then do directly). In theory,
we can (eventually) do any determinant this way. But as Example 11-5 shows, this is a lot of work,
even for the 4 X 4 case.

11.6 Row and Column Operations

To think seriously about doing large determinants, we need a way to simplify them before we use
minors. Luckily, there is such a method. It turns out that if we add any column to any other, the
determinant is the same. What does “adding a column to another” look like? In the 3 x 3 case it

could be
a

—

1 A2 413 a1 mz2+a13 a3
a1 A2 A3| = (21 A2 +a23 A,
a31 a3 a3 a31 a3 +az3 a3

w

The same works for subtraction, and for rows instead of columns. Moreover, it works for adding
any multiple of a row or column.

To see why this is useful, let us redo Example 11-5, which was so messy using minors.

EXAMPLE 11-6 We evaluate the determinant

LWoowu

7
-1

8|

2

NN =
G =W
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Let’s subtract the first row from the third to get

135 7
210 -1
111 17
6 53 2

Now adding twice the second row to the first row we get

5 55 5

210 -1

111 17

6 53 2

We can then subtract five times the third row from the first to get

000 O

210 -1

1. 11 1Ff

6 53 2

which, upon expanding by minors along the first row, is clearly 0.

We don’t often get it quite so nice as this. Usually, we do have to expand one or more of the
minors. But by forming a row or column which is mostly 0’s, with only one or two nonzero terms,
we can greatly reduce the number of minors we need to do.

EXERCISE 11-22 Do as little work as possible in evaluating the determinant

17 23 23 23
17 17 23 23
17 17 17 23|
17 17 17 17

EXERCISE 11-23 Prove that any matrix with two identical rows or columns has determinant 0. = 0>
EXERCISE 11-24 Justify Exercises 11-13 and 11-14 in terms of minors.

EXAMPLE 11-7 Remembering the formula (11.1) for the cross product isn’t so easy, but there —()>
is a very nice shorthand which does the trick. Recalling that the unit vectors are i= (1 0 0)

]=(0 1 0),andk—(0 0 1),wecanwr1te

i jk
(11 J Zl)x(xz Y2 Zz)= X 1oz
X2 Y2 22

There are many ways to see that this determinant is the cross product For one thing, expansion

by minors shows that it simplifies to l(ylzz - 1Y) + ](z,xz —-x127) + k(x1 Y2 — y1x2), which is clearly
equivalent to (11.1).
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EXERCISE 11-25 Using the previous example, show that

X0 Yo 2o
(xo wo zo)-((x1 non)x(x p 22))= XN oz
X2 Y2 22

forany vectors (-\’0 Yo Zo), (-’Cl n zl),and (.\'2 n :z). This is a simple form for the box product
defined in Chapter 12, and provides an easy way to measure the volume of any parallelepiped.

EXERCISE 11-26 Show that the cross product defined in Example 11-7 is perpendicular to both
(x1 1% zl) and (xz Y2 zz). (Use the previous exercise.)

11.7 The Inverse of a Matrix

We have discussed how, using repeated multiplications, we can find “powers” A%, A%, etc. of a matrix
A. We have had to wait for the determinant to define negative powers of matrices in a consistent
way.

Given a real number a # 0, we always have @ = 1 and a~'a = 1. For the n X n matrices, the
equivalent to the real number 1 is the identity matrix I,. We thus define A" = [, for |A| # 0. The
restriction on the determinant of A is equivalent to the requirement a # 0 for real numbers. Why?
Remember that |AB| = |A||Bl. We thus can expect that |A"| = |A|". For |A| # 0, we thus have
IA€® =1 =A% = |L,|, which is correct. But for |A| = 0, |A” = 0°, which is undefined.

Once we have defined A’, we can define the inverse A™! for |A| # 0 to be the matrix B such that

AB = [,. If A has an inverse, then it commutes with its inverse under multiplication. That is, we
have ATA = AA™ = ,.

EXERCISE 11-27 Use the original, geometric definition of the determinant to show that a matrix
with determinant 0 can’t have an inverse.

EXAMPLE 11-8 Let’s find the inverse of a 2 X 2 matrix A = (Z 3) Call the inverse (f y ) ,and

. (a b\ (x vy 10 ; s s st ax+bz ay+bw
- = . f < “ - y . =
wikte (c d) (z w) I; (0 1 ) - Performing the multiplication, we get (cx +dz cy+ dw) =

((1) 2), so we have four equations: ax + bz = 1;ay + bw = 0; cx + dz = 0; cy + dw = 1. Solving these
equations for x, y, z, w we get x = d/(ad — bc) = d/|Al, y = -b/|A|, z = —c/|A|, w = a/|Al. Thus the
inverse of the general 2 X 2 matrix A = (Z Z) is given by

4. 1 fd b
4 -IAI(-C n)'

&
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It is natural to ask whether there is a general prescription to find the inverse of a given matrix.
There is, but it is quite a mess. We need first to define the transpose AT of a matrix A, which is just
the matrix obtained by flipping the matrix over its main diagonal:

T

123 1 47
4 56| =258
7 89 369

(Another way to look at the transpose is that we have reversed the roles of rows and columns, so
that every entry 4;; is replaced by a;;.)

To find the inverse of the n X n matrix A:

1. Replace each entry by the determinant of its minor.

2. Change the signs by multiplying each entry a;; by (-1)'*/, as was done for minors.
3. Divide by |A|.
4

. Transpose the matrix. The resultis A™'.

Although this is very messy, often you are only asked to find one element of the inverse, which
is much simpler, as in Example 11-9. Also, remember that the determinant of A7 lis 1/|A], so you
don’t need to compute the inverse at all to compute its determinant!

EXERCISE 11-28 Show that the formula we obtained in Example 11-8 for the inverse of a 2 X 2
matrix agrees with the form we get using the general method.

EXAMPLE 11-9 Find the entry in the third row, second column of the inverse of

4 8 7
2 3 117.
6 3 1

Solution: Since we will need the determinant, let’s find that first. We subtract twice the second
row from the first and three times the second row from the third to get

4 8 7 0 2 -15
2 3 11j=12 3 11|
6 3 1 0 -6 -32

Expanding by minors down the first column we have -2 —-26 ::1,; » or 308. (Note how easy row

operations make this; note also the sign due to the location of the 2.) Now the entry in the third
row, second column of the inverse corresponds to the entry in the second row, third column of the
matrix, because the last step is transposition. The entry we are interested in is thus the 11. Its minor

. (4 . : ,
is ( 6 g) , with determinant —36. The sign changes because of the position of the 11, so we have 36.
The entry in the inverse is just this divided by the determinant, or 36/308 = 9/77.
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EXERCISE 11-29 Use the general method to find the inverse of the 4 X 4 identity matrix. Is this
what you expected?

EXERCISE 11-30 Practice by finding the inverse of a random 3 X 3 matrix. Check that the inverse
times the original matrix gives I5.

Just finding one entry of the inverse can require some work, so it is important to do as little as
possible, using row and column operations to simplify the determinant and other shortcuts.

Once we have defined A™!, we define A = (471)?, etc. We can now take any integral power of
a matrix with nonzero determinant.

Problems to Solve for Chapter 11

164. A is a 2 by 2 matrix whose entries are the first four prime numbers. What is the largest possible
value of det A? (MA® 1992)

165. Find the value of A if

4 4 3 2
3 -2 2 3

4=12 5 4 -
g -3 -2 0

(MA® 1992)

166. For what value of ¢ will there be no inverse for the matrix
1 4 ¢
2 -1 7 |2
3 -2 11

167. Find the determinant of the product CBA, where A = (g ‘11)’ B (g i) Sl C = (2 i)
(MA® 1991)

(MA® 1991)

168. Evaluate the following determinant, giving the answer in factored form. (MA© 1991)

al11
1a11
11a1
111 a
W X ., |[4W 4X
169.If‘y z‘_‘l,thenfmd)‘ly 4Z.(MA6 1991)
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170. Evaluate the determinant below.

311111
331111
333111
333311
3333311
3 33333

(Mandelbrot #1)

4 2

171. If A = (1 1

), then find A~2. (MA® 1991)

172. Find a matrix whose determinant, when set equal to zero, represents the equation of a circle 5\
passing through the points (=3, 1), (2,4), and (5, -2). (MA® 1991)

~.

Chapter 12 Analytical Geometry page 124
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Chapter 12

Analytic Geometry

121 Lines, Angles, and Distances

Let point A be (x;,0) and point B be (x2, y2). Hence, we have y B/!
_ BX 13-0
= t =—= =
<O ansg AX x—x ™ A
the slope of line I. From this we see that if line ! makes an angle 6 with the A X X
positive x axis, then tan 6 equals the slope of the line.

EXAMPLE 12-1 Find the slope of a line which makes a 120° angle with the positive x axis.

Solution: Applying tan8 = m, which works perfectly fine for obtuse angles since the slopes
of such lines are negative, we find that the slope of the line is tan120° = m = — V3.

L 1 How about two lines? Draw a horizontal line through the intersection point of
B lines I and n. Let a be the angle line I makes with the horizontal, f be the angle
between I and 1, and 6 = a + p. Hence, if m, is the slope of  and m, is the slope of

n, we have tana = m; and tan 6 = m, and

<O tan = tan(0 - a) = tanf —tana _ my-m

1+tanBtana  1+mymy

N

EXAMPLE 12-2 Find the acute angle made by the lines 2x — y = 3 and x — 3y = 4.
Solution: The slopes of the two lines are 2 and 1/3, so from the above discussion we find
1
1.2
S =
tanb = 110

Since tan @ = -1, the angle between the lines is 135°. WARNING: The problem asks for the acute
angle, not the obtuse angle. Hence, our desired answer is 180° - 135° = 45°. Keep an eye out for this;
we can take the slopes of the line in either order, so tan 6 can be negative or positive, corresponding
to the obtuse and acute angles between the lines, respectively.

-1

< 124 »

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

the ART of PROBLEM SOLVING: Volume 2 < 125

EXERCISE 12-1 Find the tangent of the obtuse angle formed by 2x -3y =4and x -3y +2=0.

12.2 Parameters

Curves are really one-dimensional figures, so we should be able to describe them with a single
variable instead of the usual x and y. Let’s start with the unit circle,

2+ =1

We can describe this circle with one variable using trigonometry. Recall that we can let x = cc')s 7}
and y = sin 6. Hence, as 6 ranges from 0 to 271, we trace out the entire circle. For this representation,
we say that

x = cosf

y = sinf
are the parametric equations that describe the circle 22 + y? = 1. The dummy variable 6 is called
the parameter. This parametric description is useful not only because it has only one variable €, but

also because 6 is unconstrained—it can take on any value. In our original (x, ¥) descriptions, only
certain pairs (x, y) are on the circle.

Let’s try a more complicated circle:
(x=5)% +(y - 3)% = 16.

We wish to find a pair of functions such that x = f(6) and y = g(0) describe the above circle. Note
that if we write x =5 + f1(6) and y = 3 + g1(6), our circle becomes

[AO) +[81(6)] = 16.

This is highly suggestive of our initial circle, so we let f1(6) = 4cos 6 and g;(6) = 4sin 6, and our
parametric representation of the circle is

5+4cosO
3+4sin6.

X

EXAMPLE 12-3 Find a parametric description of the line 2x + 3y = 5.

Solution: There are many possible representations; we find ours by solving the equation for

y‘ —_gx+§.
y=-3**3

Thus, one possible parametric description of the line is

x = ¢t
-2t/3+5/3.
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§\ EXERCISE 12-2 Find a parametric representation for the curve 922 —4y? —72x + 16y + 164 = 0.
EXAMPLE 12-4 Find a general parametric representation for the ellipse

(x=n? (y=-k? _
2 b 5 j—b2— =1L

Solution: Comparing this to the identity cos?6 + sin?6 = 1, we see that we can develop a
parametric form by letting (x—#)?/a® = cos? 6. Taking square roots, we find x = /1 +a cos 6. St.rmlar‘ly,
we find y = k+bsin 6 to complete the problem. In the same method as above, we can use the identity
sec? 6 - tan? 6 = 1 to develop a parameterization of a general hyperbola.

Just as important as finding parametric representations for curves is determining the original
equation for a curve given the parametric equations describing it. Let’s try an example.

Find the equation of a curve satisfying the parametric equations

3+logt
2 -logt.

X

To get rid of our parameter, we combine the equations to eliminate f, or solve for the parameter
in one equation and substitute in the other. When trigonometric functions of parameters occur, we
can also use various identities to get rid of the parameters. In this case, we note the first equation is
equivalent to x = 3 + 2]log t. Now we can eliminate log by multiplying the equation for y by 2 and
adding the result (2y = 4 — 2log ) to the equation for x, yielding x + 2y = 7 as the desired equation.

EXAMPLE 12-5 Find the curve satisfying the parametric equations

X = cost—sint
y = sin2t.

Solution: Recall from our discussion of trigonometry that squaring the first equation gives
x? = (cost —sint)? = cos?t — 2sintcost + sin?t = 1 — sin 2t.

Since sin 2t = y, the desired equation is x? = 1 - y, a parabola.

EXERCISE 12-3 Find the curve described by

(sin® 6)/(cos 6)
cos 6.

x
y
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12.3 Vectors

First we’ll run through a quick review of a few important concepts A C
which we'll be using in this chapter. In the diagram, let O be the origin, 7
be the vector representing OA, and b be the vector representing OB. Since
@-b = a6l cos LAOB, we have L
ik oX _
a-b= (AO)(OB)AO = (OB)(OX).

Thus the dot product of @ and b is the length of b times the length of the projection of OA onto OB
(segment OX above). Make sure you understand this interpretation of the :iot product as a measure
of projection. Finally, recall that #and b are perpendicular if and only if @+ b = 0. (To what projection
does a negative dot product correspond? Draw two vectors which have a negative dot product and
you'll see!)

EXAMPLE 12-6 Find the vector which is normal, or perpendicular, to the line2x +3y =7 = 0.

Solution: Consider two points (x1, 1) and (x2, y2) on the line. Hence, we have

0 and
0.

211+3y1—7
2 +3y2 =7

Subtracting the first from the second
2x2—x1) +3(02-y) = (2 3)-(2-n y2-y1)=0.

The second vector in the dot product is the vector in the direction of the line since (xi, y1) and (x2, y2)
are on the line. Since the dot product is 0, the vector (2 3) is normal to the line.

Our work on this problem shows us how to determine the vector, 7 from point Py = (x1, 1) to
P, = (x2,¥2)- In going from P; to P2, the x-coordinate changes by x, — x; and the y-coordinate by
y2 — y1. These changes give us our vector, ¥=(x2-x y- n).
EXAMPLE 12-7 Find the distance from (xo, yo) to the line Ax + By + C=0.

Solution: Let the line be line ! in the diagram and the point be Z. Suppose point Y
W(x1, 1) lies on L. If we draw a line through Z paralle! to I, the <;list‘ance between
the parallel line and / is the desired distance. In the diagram this line through Z w
intersects the normal to line ! through W V at Y. From this we see that the distance z
we seek is the length of the projection of WZ onto the normal 7 to line / through W.
As in the prior example we can show that this normal is (A B), and our distance !

° (W2 _ 1o~ ) + Byo = ) _ Axo + Byo = (Ax + Byl

A VAZ +B? VAZ + B2
Since (x1,y1) is on I, we have Ax; + Byi = —-C, and the distance is
|Axo + Byo + C|
VAT+BZ
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EXERCISE 12-4 In the previous example, why do we divide by ||| in determining the distance
between the point and the line?

Now let’s look at the cross product. First, #x b is a vector normal to the A ¢
plane containing # and b. The length of the cross product is found by

1l&x Bll = llal|Bll sin ZAOB = (AO)(OB)sin LAOB, o B

which is equal to the area of parallelogram OACB, where C is found by copying vector OB at A.
Since [ABO] is half of this parallelogram, we can find [ABO] as half the magnitude of @xb.

EXAMPLE 12-8 Find the area of the triangle with vertices (5,4), (3,6), and (2,1).

Solution: Let A, B, and C, respectively be the aforementioned vertices. Let’s write them as three
dimensional points with 0 in the z dimension (for example point A is (5,4, 0)) so we can use cross
products. Let Cbe the origin and #and bbe CA and CB. Hence,@= (5-2 4-1 0-0)=(3 3 0)

and b = (1 5 0). Thus, #x b = (0 0 12). The magnitude of this is 12, so the area of the desired
triangle is 12/2 = 6.

N

EXERCISE 12-5 Prove, using the same approach as in the prior example, that the area of the triangle
with vertices (x1, y1), (x2, ¥2), and (x3, y3) is the absolute value of

1 X1 yl 1
X2 Y2 i §
x3 y3 1

=

EXERCISE 12-6 Prove that if we have a convex polygon (meaning any segment connecting two
points in the polygon is contained entirely within the polygon) with n vertices in order at (x;, v1),
.» (Xn, yn), then we can find the area as follows. List the vertices vertically in order, putting the first
point both first and last as in the middle two columns below, then find the products along diagonals
as shown
X1 N
X2 W2
X2Y1 X3 Y3 x1Yy2

Xn-1Yn-2 Xn Yn Xn-2Yn-1
XnYn-1 X1 Y1 Xn-1Yn
X1Yn Xn¥1

Let S; be the sum of the left column of products and S, the sum of the right column. The area is
then |S; — 5)|/2. Hint: Prove it first for a triangle, then use induction.
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We can also find the area of a polygon with lattice points (points with integer coordinates) as
vertices using Pick’s Theorem. Draw the polygon and let I be the number of lattice points entirely
within the polygon (we’ll call these interior points) and B be the number of points which lie on
the boundary of polygon (which we'll call boundary points). Pick’s Theorem states that the area
contained in the polygon is

B .
I+ -1 =(>

Suppose we are asked to find the area of ABCD at right. There are 8 points A
inside ABCD and 6 points on the boundary (the 4 vertices plus the points on BC / B
and DC). By Pick’s Theorem, the area is therefore 8 + 6/2 — 1 = 10. A

We'll prove Pick’s Theorem for convex polygons through a series of steps. We’ll D
start with rectangles, then move to right triangles, then any triangle, then finally
convex polygons. C

EXAMPLE 12-9 Prove that Pick’s Theorem holds for a rectangle with sides of length and b which
are parallel to the coordinate axes.

Proof: The area of the rectangle is clearly ab, so we wish to prove that I + B/2 -1 = ab. The
interior points of the rectangle form ana —1by b—1grid, so I = (a — 1)(b — 1). For the boundary
there are 4 corners, 2 — 1 lattice points on each of one pair of sides and b — 1 lattice points on each of
the other pair of sides. Hence, B = 4 + 2(a — 1) + 2(b — 1). Thus, we have

I+B/2-1=ab—a-b+1+Q2+a-1+b-1)-1=ab,

as desired.

EXERCISE 12-7 Use the proven fact that Pick’s Theorem is true for rectangles to prove that it works
for right triangles which have legs parallel to the coordinate axes.

Now we’re ready for the toughest part of our proof; showing that Pick’s Theorem holds for any
triangle with integer vertices.

We can inscribe any such triangle BEF in a rectangle such that the sides of the A B
rectangle are parallel to the coordinate axes and one of the vertices of the triangle A /
is a vertex of the rectangle as shown. A
To prove Pick’s Theorem for ABEF we'll apply Pick’s Theorem to ABCD and F 7
the three right triangles in ABCD outside ABEF. Let Iz and Bg be the number of
interior points and boundary points of ABCD, respectively. Similarly, let Iy and D c

B, be the total number of interior and boundary points of all three right triangles
and L and B. be the number of interior and boundary points of ABEF. To prove Pick’s Theorem for
ABEF, we must show that [BEF] = L. + B./2 - 1.

Since any interior point of ABCD is either an interior point of one of the right triangles, a boundary
point of ABEF besides one of the three vertices, or an interior point of ABEF, we have

In=Ip+(B.-3)+L.

Similarly, any boundary point of one of the right triangles is either a boundary point of ABCD or a
boundary point of ABEF, so we have
BA = BD + B..
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Notice that in this equation we have counted the vertices of ABEF twice among the boundary points
of the right triangles (once in By and once in B.). This is necessary because each of these three
vertices occur on two of the right triangles. Finally we are ready to evaluate the area of ABEF as
the difference between the area of ABCD and the area contained in the right triangles. Using Pick’s
Theorem, the area of ABCD is I + Bn/2 — 1 and that of the right triangles is I + Ba/2 — 3, where we
subtract 3 because we are applying Pick’s Theorem 3 times. Hence we have

_ Ba Bs
[BEF] = (1D+7-1)-(1A+ : 3)
B.
= IA+B.—:;%+I.+BZ—D—1—1,,‘—3':’;r +3
_ Bo Bo+B.\ . . o
= (I'+IA_IA)+(B'+7— 2 )+(3 3-1)
Bn
= I.+'§‘—l,

so we have proven that Pick’s Theorem holds for any triangle [BEF]. Note that in this proof, we
have assumed that none of the sides of ABEF are parallel to a coordinate axis. Can you use a
similar argument to the one above to address the case of one of the sides of ABEF being parallel to a
coordinate axis?

5’\ EXERCISE 12-8 Complete our proof of Pick’s Theorem for convex polygons by showing that we
can divide any n sided polygon into triangles, then apply Pick’s Theorem to the triangles to show
that it holds for the polygon.

EXERCISE 12-9 In our proof of Pick’s Theorem we stated that any triangle can be inscribed in a
rectangle such that the sides of the rectangle are parallel to the coordinate axes and one of the vertices
of the triangle is a vertex of the rectangle. Prove that this is true.

EXERCISE 12-10 How can we extend our proof for convex polygons to prove Pick’s Theorem for
non-convex polygons?

12.4 Points, Lines, and Planes

If we are describing points in space we need three coordinates, two for the x and y directions as in
two dimensional graphing, and a third for distance above or below the standard xy plane. As with
two dimensions, we are often interested in finding the distance between two such points.

In the figure, let the points A and Bbe (x1, y1,21) and (x2, y2, 22), respectively. B
The x, y, and z axes are also shown. We find the distance between A and B in .
much the same way as in two dimensions: using the Pythagorean Theorem.
We draw a line through A parallel to the x axis and a line through B parallel
to the z axis. We select points X and Y on these lines such that XY is parallel
to the y axis. Since AX, XY, and BY are parallel to the coordinate axes, AAXY
and AAYB are right triangles.

Clearly Y has the same x and y coordinate as B and the same z coordinate
as A. Hence Y has coordinates (x2,y¥2,21) and similarly, X has coordinates
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(x2,y1,21). Thus, X and A differ only in the x coordinate and AX = [xz — x1|. Similarly, we find
XY = |y2 = y1l and BY = |23 — 2. From the Pythagorean Theorem we have

AY = VAX2 + XY2 = \/(xz -2+ (2 - y1)%
we then apply the Pythagorean Theorem to triangle ABY to find

AB = VAY?2 + BY? = \/(xz -x1)2+ (y2 - )2 + (22— 21)%

This is the distance formula for three dimensions. In much the same way as with two dimensions,
we can show that the midpoint between two points in space is ((x1 + x2)/2, (y1 + ¥2)/2, (21 + 22)/2).
How do we describe lines? Just as for lines in a plane, for lines in space we need a point on the
line and a direction. For example, suppose we have a line through (1, 2, 3) in the direction of 7, where
#=(2 3 4).Hence,(1,2,3)+2(2,3,4) = (5,8,11) ison the line, asis (1,2,3)-3(2,3,4) = (-5,-7,-9).
In fact, we get a point on the line by adding any multiple t7 of 7'to (1, 2,3). Our line then becomes

()-()-)

Hence we have described the line as a set of parametric equations:

= 1+2¢
2+ 3t
3 +4t.

X
y
z

If we solve each of these for t, we can write

t_x—l_y—2_z—3
- T I

In this notation, we don’t need to include the ¢ to describe the line.

EXERCISE 12-11 Find a parametric representation for the line through (1,-1,3) and (2, 3, 1).

Let’s try planes. An equation of the form Ax + By = D describes a line in two dimensions, so it
seems likely that an equation of the form Ax + By + Cz = D describes a plane in three dimensions.
This is correct, but why?

Suppose we know that our plane contains the point (1,2,3) and is perpendicular to the direction
I= (2 1 4). (Why do we use a vector perpendicular to a plane to denote the plane’s direction?)
Consider any point (x,y,z) which is on the plane. The vector @ = (x -1 y-2 z- 3)

2 must be
perpendicular to 7 since @ is contained in the plane. Thus, we must have @ - 7 = 0, or

2x-1)+1(y-2)+4(z-3)=0.
Our plane, then, is 2x + y + 4z = 16. Notice that the coefficients match the directional components of
the normal vector, 7. We can use this fact to quickly determine the equation of a plane. For example,

if a plane contains (2,4,1) and is normal to (—1 4 3), the equation of the plane is —x + 4y +3z = ¢
for some c. We find ¢ = 17 by letting (x,y,2) = (2,4,1), so the plane is —x + 4y + 3z = 17,
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EXAMPLE 12-10 Find the equation of the plane passing through (0,3, -1), (2,-1,2), and (1, -4,0).

Solution: Let the three given points be A, B, and C, respectively. We have three points, so
we have enough to determine a plane; however, we don’t have a directioi Since > we have three
points in the plane, we can find two vectors parallel to the plane, namely AB and AC. Hence, the
direction normal to the plane is given by the cross product:

ABxAC=(2 -4 3)x(1 -7 1)=(17 1 -10).
Thus, we have
(x y-3 z+1)-(17 1 -10) =0,
so our plane is 17x + y — 10z = 13.
EXERCISE 12-12 Find the plane through (1,2,1), (0,-3,1), and (-1, -2,2).
<Dé EXERCISE 12-13 Find the distance from the point (xo, o, Zo) to the plane Ax + By + Cz+ D = 0.

Notice that we could also describe the plane in the example above as

()-()-()-C)

Since the two vectors (2,—4,3) and (1,-7, 1) are parallel to the plane, we can add any multiples of
these to the point (0,3, —1) in the plane to get other points in the plane. Hence, we can describe the
plane with two parameters as

N R

2u+v
3-4u-7v
z = =143u+v.

We see from this that just as we can describe curves with a single parameter, we can describe surfaces
with two.

Finally we are ready for volumes. Let A = (x1,y1,21), B =
(x2,y2,22), and C = (x3,y3,23) be points in space and 4, b, and
¢ represent the vectors from O to A, B, and C, respectively. As
discussed above, & x b is a vector normal to plane OAB whose
length is the area of the parallelogram with sides OA and OB. Now,
suppose we evaluate ¢+ (@' x b). We can write this as @ % BlIE- i),
where n is the unit normal to plane OAB, meaning it is the vector
with length 1 in the direction of @ x b.

EXERCISE 12-14 Why does &- (% b) equal || x b||(¢"- 7)?
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Since &- 1 is the length of the projection of ¢ in the direction of n and ||ff]l = 1, this product is equal
to the distance from C to plane OAB. Since ||#'X l_;ll is the area of the parallelogram with sides OA and
OB, the magnitude of the product ||#x I-J'Il(é' .#) is the volume of the parallelepiped with sides OA, OB,
and OC. The product ¢ (@x 5) is often called the box product of the three vectors, and the magnitude
is the same regardless of the order of @, b, and ¢'in the product. Keep in mind that the product can be
positive or negative, since the cross product of #and b may be on the same or opposite side of OAB
as point C (depending on which of @ and b comes first in the cross product).

EXERCISE 12-15 Prove that the box product ¢+ (7 x b) has the same magnitude regardless of the
order of @, b, and ¢'in the product.

We can use this same approach to find the volume of the tetrahedron with vertices O, A, B,and C.
This tetrahedron is a pyramid with base AAOB and altitude the same as that of the parallelepiped.
Since the area of the triangle is half the area of the parallelogram with sides OA and OB and a

pyramid has volume (1/3)(base area)(height), the volume of the tetrahedron is then [¢" (@ % b)/6.

EXAMPLE 12-11 Find the volume of the tetrahedron with vertices at (1,0,-2), (2,3,1), (2,1,-4),
and (1,2, -1).

Solution: We can find the vectors &, b, and ¢ above by designating one of the points as the
origin O above and the other three as A, B, and C. Letting the first point be O, our vectors are
Z=(1 3 3), b= (1 1 -2),and&=(-2 2 1). Instead of finding the cross product of the first
two vectors then dotting the result with the third vector, we note that in the dot product - (@x 5),

we merely multiply the first component of @' x b by -2, the second by 2 and the third by 1. (Why?
Look at the components of ¢)) Hence, rather than evaluating the cross product

k
3

7

- w\"

ey

-2

we replace the Z ]_,’I-c' with the components of the third vector and we have

221
¢-@xb=[1 3 3|=26
1 1 -2

Hence, our desired volume is 26/6 = 13/3.

EXERCISE 12-16 Show that the box product of any three vectors (x1 n zl), (xz V2 22), and ;0>
(x:; y3 23) is

X1 N2

X2 Y2 23|

X3 Y3 23
Use this to write a general formula for the volume of tetrahedron with vertices (x1, y1,21), (x2, y2, 22),
(x3,y3,23), and (x4, Y4, Z4)-
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12.5 Curved Surfaces

The equation x? + y* = 12 is a circle when plotted in a plane; however, if we consider this as an
equation in three dimensions, we have no restriction on z. Hence, for every value of z we have a
circle of radius r. The resulting graph is an infinite cylinder whose axis is the z axis and radius has
length r. We can write this with parameters z and 6 as

= rcosf
= rsin@
z = Z

&

The parameters (7, 6,z) as defined above can be used to identify any point in space, just as polar
coordinates (7, ) locate any point in the plane. Thus these cylindrical coordinates are a new set
of three dimensional coordinates, which can be used where convenient as an alternative to the
Cartesian coordinates (x, y, z).

EXAMPLE 12-12 Express the Cartesian point (3,3,3) in cylindrical coordinates.

Solution: The third coordinate remains the same, 3. The first two, (3,3), we put in polar co-
ordinates as r = 3 V2 and 6 = 45°. Hence, the point is (3 V2,45°, 3).
EXERCISE 12-17 Express the cylindrical coordinate point (3,120°, —4) in rectangular coordinates.
EXERCISE 12-18 What is the equation for a cylinder in cylindrical coordinates?

In the same way that a circle is the set of points equidistant from a given point in a plane, a
sphere is the set of points equidistant from a given point in space. Let the center be (xo, yo, 2) and
the distance be p. From the distance formula, for any point (x, y, z) on the sphere we have

p = V(x—x02+(y— yo)? + (z — 20)2.

Squaring this we have the general form for a sphere: (x - x0)? + (y — y)? + (z — 20)? = 2.
Having seen the parameterization for cylinders and knowing of the one for circles, we figure
there must be some convenient parameterization for the sphere. We‘ll consider the sphere

Py e =ph

Connect any point P on the sphere with the origin O. Let ¢ be the angle
formed by OP and the positive z axis, where 0 < ¢ < 7. Hence, if the point
is above the xy plane (i.e. the plane z = 0), we have 0 < ¢ < m/2, and if it
is below, /2 < ¢ < . We then let 6 be the angle between the projection,
OX, of OP onto the xy plane and the positive x axis, just as in polar and
cylindrical coordinates. Since in the diagram OP = pand LPOX =90° - ¢,
we find PX = psin(90° - ¢) = pcos ¢ and OX = p cos(90° — ¢) = psin¢. If
we then project OX onto the x axis, we find that the x coordinate is
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(OX)(cos 6) = pcos Bsin ¢ and the y coordinate is psin Osin ¢p. Hence, we describe the sphere as

pcosBsing

psin@sing O>

pcos .

z

These are spherical coordinates. For any point P, ¢ is the angle OP makes with the positive z axis, 0
is the angle the projection of OP onto the xy plane makes with the positive x axis, and p is the length
of OP.

EXERCISE 12-19 Prove that x2 + y? + 22 = p? for our spherical parameterization above.

EXAMPLE 12-13 Express the point (-2 V2,242, 4) in spherical coordinates.

Solution: Finding p is easy:

p= 2+ P+ = \/(-2V2R + (@ VIR +42 =4V2.

Since z = pcos ¢ = 4 V2cos ¢, we find cos¢ = V2/2 and ¢ = 45°. Finally, the value of 6 is the same
as when we put (-2 v2,2v2) in polar coordinates, or 135°, since the point is in the second quadrant
and tan 6 = —1. Hence, the point is (p, 6, ¢) = (4¥2,135°,45°).

EXAMPLE 12-14 Express the cylinder x? + 4 = 1 in spherical coordinates.
Solution: Since x = pcos 8sin¢ and y = psin Osin ¢, we have
x? + y? = p? cos? Osin? ¢ + p*sin? Bsin’ ¢ = p? sin? ¢,

so our equation is p?sin’ ¢ = 1.

EXERCISE 12-20 Find the equation of a sphere with center at the origin in spherical coordinates.

EXERCISE 12-21 What is the graph of p = p;, where p; is a constant? How about 8 = 6;? And
¢=¢1?

EXERCISE 12-22 What geometrical figure is described by the equation x? + 12 = z2?

\

1D

12.6 Using Analytic Geometry

Although it’s usually a painful process, some geometry problems can be attacked by labelling the

given figures in the plane and using algebra. We'll just do an example here to show you how
analytical geometry can be useful.

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 1 - 13 upto Page 158 part 1 of 2 parts 7
th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

136 » CHAPTER 12. ANALYTIC GEOMETRY

EXAMPLE 12-15 The sides AD and BC of a convex quadrilateral ABCD are extended to meet at E.
Let H and G be the midpoints of BD and AC, respectively. Find the ratio of the area of the triangle
EHG to that of the quadrilateral ABCD. (Canada 1978)

B Solution: Let A be the origin, B be (a,b), C be (c,d), and point D be (1,0).
c Since point E is on the x axis, it is the point on line BC where y = 0. Since the
line through B and C is
d-b
- b F y=br=ie—(x=m),

the coordinates of E are ((ad — bc)/(d — b),0). Since G and H are the midpoints of AC and BD, they

have coordinates (§, 4) and (%41, ), respectively. Using our methods from earlier in the chapter to
find the area of a triangle, we have

[ABCD] = [AEB]- [CDE]
0 01 c d1
= %"335001—% 1 01
a b 1] “|ut 0 1
= (bc—ad +d)/2
and
P51
[GEH] = 1‘% 01
2 a+l b
7 11
= (bc—ad+d)/8

Hence, [GEH] = [ABCD]/4 and our desired ratio is 1/4.

‘ WARNING: Don't fall into the trap of using analytical geometry often to solve normal geometry
problems. It is rarely the best way to go. For those of you who really like the concepts of analytical
geometry, there is a happy medium between coordinate geometry and Euclidean principles: the use
of vectors.

12.7 Vectors and Geometry Problems

First we’ll do a review of vector addition and subtraction. In the Y A X
diagram, suppose we are interested in adding vectors OA and OB. (Re- W
member that the tail of the vector comes first in writing the vector, as in
OB.) If we let O be the origin, we can write the two vectors as A and B. 0o B

To add these, we copy vector B with A as its tail forming AX. The result
of the addition A + B is the vector from our original starting point, O, to the final point, X, or

A+B=0X.
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Notice that in finding Ak B, we start from 0, travel in the magnitude and direction of A, then travel
B, Similarly, to find A =B, we go from O to A, then starting from A we go in the direction and
magnitude of i, 0or AYin the dingrlrp. The resultis OY. Since AY || BOand AY = BO, quadrilateral
OBAY is a parallelogram, Hence, OY has the same magnitude and direction as BA. Thus, we can
represent the vector from B to A as A-B.

EXERCISE 12-23 Show that for points A, B, and C, we can write AB + BC = AC.

EXERCISE 12-24 Whatis AB - AC?

There is one last important relation to take from this initial diagram. Since OAXB is _a_gara]]elo-
gram, point M, the intersection of the diagonals, is the midpoint of AB and OX. Since OM is in the
same direction as OX and OX = 2(OM), we have

. 0% A+#
e

EXAMPLE 12-16 With respect to some arbitrary origin, points A, B, and C are represented by A B,
and €. Find vector representations of the sides and medians of AABC.

Solution: Side AB is represented by the vector from A to B, or B-A by the discussion above.
Similarly, the other two sides are ¢-Band A-C. (The negatives of any of these three are also valid
representations of the sides.) As for the median from point A, we know it connects A to the midpoint
of BC. We can represent the midpoint, M, of BC as M= (§ + 6)/2. Hence, we have

—

Thegio i BrC-24

2

The other medians are found in the same way.

EXERCISE 12-25 Let X be a point on AB such that AX = 2(BX). Find a vector representation for X §\
in terms of A and B.

EXAMPLE 12-17 Let the sides AB, BC, and AC of AABC be c, a, and b, respectively, and the foot of

the angle bisector from A be point D. Prove that

D:=bg+(,‘6

b+c '

Proof: In working the previous exercise, you should have found that the vector representation
of a point X on segment YZ such that XY = yand XZ =z is

X=z?+y2
y+z
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Applying this to point D on BC, we have

Be BD)C + (CD)B
T BD+CD
We need to relate BD and CD to the sides of the triangle, so we turn to the Angle Bisector Theorem,
which gives BD/CD = AB/AC = ¢/b. Dividing the top and bottom of our fraction for D by CD, we
find
B (c/)C+B _cC+bB
T oe/b+1 T c+b

We can use vectors to determine intersections. For exam ple, how can we represent the centroid
of a triangle with vectors? Let G be the vector representing the centroid, and the midpoints of BC
and AC be at M and N, respectively. Since G is on AM and BN, we know that AG is in the same
direction as AM and BG is in the same direction as BN. Here’s the key: if vectors X and ¥ are in the

q) same direction, then there is some constant ¢ such that # = cij. (Why?) Hence, there is some pair of
constants ¢; and ¢, such that AG = chM and BC = czB_l\7, or

E-F = ¢ (M_x)

n

2

Cz(/ﬁ@_g)_

G-B 5

Since G must be the same in both of these, we find

6=f.‘1 (%—A‘)+A’=CZ<A’;C‘_ >+§

Since A‘, I}, and Care arbitrary, the coefficients of these must be the same on both sides of the equality
above. Matching coefficients of ¢ we have¢; = c3,and matching those of A or B, we find they both
equal 2/3. Putting these back in the above expression for G, we have

.
B= =t

0

as our representation of the centroid of AABC.
Let’s try altitudes now. Let H be the orthocenter of AABC. Since the line from A through H is

perpendicular to BC, the vector H - A must be normal to B - €. Vectors which are perpendicular
have a dot product of 0 (remember this, it’s a very good way to use vectors), so we can write

H-A-B-O=H-B-C-H=H-06).A-B)=0. (12.1)

Now we appear stuck. There’s no obvious simple way to find H. This leads us to yet another clever
technique when working with vectors. We can choose any origin we want when working with
vectors, so we should choose an origin which simplifies our problem. In most triangle problems
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"
this convenient origin is the circumcenter of the triangle, because in this case, A, B, and C all have the
same length (because the circumcenter of a triangle is equidistant from the vertices of the triangle).

Now let’s re-examine the equations (12.1) and try guessing a form of H. The best one that stands out
is simply H=A+B+Csinceitis symmetric (since A, B, and C are arbitrary, symmetric forms are a
good place to start). Thus, we find

H-A-B-O=F+&-B-&=8.B-8.¢+¢.B-¢.¢

Since B-C = C-Band #- % = |42, we find (H - A) - (B - &) = |1B12 - ICI1? = 0, since B and C have the
same length. Similarly, the other two expressions are also 0 and we find that

H=A+B+C

is the vector representation of the orthocenter of a triangle when the origin is taken to be the
circumcenter.

From this proof we see the importance of cleverly choosing the origin. (The circumcenter is
usually best for triangles.) The following example shows how vectors can be used to simplify
seemingly complicated problems.

EXAMPLE 12-18 Vertex A of the acute triangle ABC is equidistant from the circumcenter O and the
orthocenter H. Determine all possible values for the measure of angle A. (IMO 1989)

Solution: Letting the circumcenter be the origin of our vector system, we can write the re-
striction that O and H are equidistant from A as u/f - O|l = lIAll = |lA — HJ|. Squaring this and noting
that |4]| = |B]l = |IC]l = R, the circumradius, and that H = 4 + B + C, we have

R2=||A-OR=1A-HPF =1B+CP=B+3)-B+0.
Expanding the right side and noting that
?=|B-CP=EB-&)-B-O) =B +ICR-28-¢
where a is the length of side BC, we find
R? = ||BI? + 2B - C + I = 1B + ICI? + IBI? + ICI? - @ = 4R? ~ 2.

Hence, a/R = V3 and from the law of sines we have a/R = 2sin A, so sinA = V3/2 and ZA = 60° is
the only possible value of ZA.

EXERCISE 12-26 Use the result of Example 12-17 to show that if I is the incenter of AABC with

a=BC,b=AC,and c = AB, then W .
aA +bB+cC ¢
I= a+b+c O>

EXAMPLE 12-19 Prove that if the vectors from the origin O to points A and C are A and C,
respectively, then

\I/

A-0E)-(A-0) = AR +IG? + AN
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implies that ZAOC = 120°.

Proof: Applying the law of cosines to AAOC, we have
AC? = 0A? + OC? - 2(0OA)(OC) cos LAOC.
Since ACis represented by A -G wehave AC? = ||A - G = (A- C)- (A - C). Similarly, we have
OA =||Alland OC = ||C||. Making these substitutions in our law of cosines, we have
(A=C)- (A= C) = IAIP + 1117 - 2014)IC]l cos LAOC.

Comparing this to the expression in the problem, we find cos ZAOC = —1/2, so LAOC = 120°. When
working with vectors, keep an eye out for expressions like the one in this problem so you can identify
120° angles.

EXERCISE 12-27 In the spirit of the above problem, what do we know about ZAOC if

A-0)-(A-3) = IAIR + G2 - 1AICIrR

Finally, let’s take a look at how we can use vectors on three dimensional problems. As we
discussed in Volume 1, most three dimensional problems are merely two dimensional problems in
hiding. The solution to the problem can be found by choosing the correct two dimensional cross
section. There are some (but not too many) more complicated problems which cannot be solved
with planar cross sections, but most of these are a bit beyond the scope of our discussion. We will,
however, introduce the use of vectors to solve some of these problems.

EXAMPLE 12-20 Let G be the centroid of face BCD of regular tetrahedron ABCD. Prove that AG is
perpendicular to BCD.

Proof: For each point X, let the vector X represent the vector from the origin to X. Since G
is the centroid of ABCD, we have

+ B3 C+D
G——3—-.

In order to prove that AG is perpendicular to face BCD, we must show that AGis perpendicular to
some vector in the plane BCD. One such vector in the plane BCD is B - C, the vector from C to B.
Hence, we must show that (AG) - (B - C) iO. Now we choose the origin to simplify the problem.

We let point A be the origin because then AG = G, and vectors B, C and B represent the edges from
A to the other vertices of the tetrahedron. Hence, we have

(R;’>-(§-c*)=(5+—?—5)-(§—6)=

= o

(B-B-C.C+B-B-C.D).

W=

How do we evaluate each of these terms? First note that the lengths of B, C, and D are the same.
Let this length be x. Hence, B- B = C- C = x%. Since the faces of ABCD are equilateral triangles,
B-D=C-D = x%cos60° = x2/2. Making these substitutions in the above expression yields

(AG)-(B-C) =0,
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as desired. Hence, the line from a vertex to the centroid of the opposite face of a regular tetrahedron
is the altitude from that vertex to the opposite face.

EXAMPLE 12-21 Point X is such that

X=A+B';C+D

represents the vector from the origin to X. A segment from each vertex of tetrahedron ABCD is drawn
to the centroid of the opposite face. Prove that X is on all four of these segments, thus showing that

they are concurrent. The point at the head of X defined above is called the centroid of the tetrahedron.

Proof: Let G be the centroid of face BCD. To show that X is on AG, we must prove that
X - Aand G - A are in the same direction. To prove these vectors are in the same direction we must
show that there is some constant such that X — 4 = ¢(G — A). Writing these vectors in terms of the

vertices, we find
i 4 e A+B'+C+D_A,=B+C+ 34
4 . 4
C-;'_At _ §+6+5 A0_§+é+5—31€
= 3 —-A= 3 3

Hence, we have X - A = 3 /4)(6 - A'). Thus, X is on AG and we can also show that X is on
each of the other 3 similarly defined segments, so all four of these segments are therefore concurrent.
Furthermore, the point X divides each segment in the ratio 3 : 1, just like the centroid of an equilateral
triangle divides each median in the ratio 2 : 1.

EXERCISE 12-28 If ABCD is a regular tetrahedron, what can we say about the altitudes of ABCD
based on the prior example?

EXERCISE 12-29 Complete our analogy of the point X in the above example in a regular tetrahedron
to the centroid of an equilateral triangle. What is the ratio of the radius of the sphere inscribed in
regular tetrahedron ABCD to the altitude length of ABCD? How about the radius of the circumscribed
sphere?

EXERCISE 12-30 Find the altitude length, the volume, the radius of the inscribed sphere, and the
radius of the circumscribed sphere of a regular tetrahedron with side length 6.

Problems to Solve for Chapter 12

173. Find the volume of the tetrahedron with vertices A(0,~-1,3), B(3,2,1), C(1,-1,2), and D(2, 3, 1).
(MA® 1991)

174. If x =1+ 27 and y = 1 + 277, then find y in terms of x. (AHSME 1970)
175. Find the volume of the region satisfying 0 < z < 6 and x2 + 2 < 2.
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176. Given a point P in the octant of space where x, y, z > 0, the line connecting point P with the origin
makes angles 6; with the z axis, 6, with the x axis, and 63 with the y axis. Given that cos 61 = Rand
cos 6, = S, find cos 63. (MA® 1992)

177. Find a parametric representation of the line through (1,2,3) and (-2, -1, -3).
178. If A, B, C, D are four points in space such that
LABC = (BCD = (CDA = (tDAB = 1/2,

prove that A, B, C, D lie in a plane. (Canada 1976)

§\ - 179. Find k if P, Q, R, and S are points on the sides of quadrilateral ABCD so
that
R AP_BQ _CR_DS_,
s c PB-QC RD SA

and the area of quadrilateral PQRS is exactly 52% of the area of quadrilateral
i Q  ABCD. (usAwTs 3) :
P
180. There are two spherical balls of different sizes lying in two corners of a rectangular room, each
touching two walls and the floor. If there is a point on each ball which is 5 inches from each wall
which that ball touches and 10 inches from the floor, then find the sum of the diameters of the balls.
(AHSME 1977)

181. Let P be a point on hypotenuse AB (or its extension) of isosceles right triangle ABC. Prove that
for all such P, 2CP% = AP? + PB2. (AHSME 1969)

182. Find the volume of the region in space defined by |x + y + z| + |x + y — z| < 8, where x, ¥,z20.
(Mandelbrot #1)

§\ 183. In right-angled parallelepiped ABCDA1B;C1D; diagonal AC; is perpendicular to the plane
containing triangle A1BD. Prove that ABCDA1B1C1D; is a cube. (M&IQ 1992)

184. The altitudes of a tetrahedron ABCD are extended externally to points E, F, G, and H respectively,
where AE = k/hg, BF = k/hy, CG = k/h, and DH = k/h,. Here, k is a constant and h, denotes the
length of the altitude of ABCD from vertex A, etc. Prove that the centroid of the tetrahedron EFGH
coincides with the centroid of ABCD. (Canada 1982)

Chapter 13 Equations and Expressions page 143
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Chapter 13

Equations and Expressions

13.1 Linear Equations

In the first volume we solved linear equations in one variable and systems of equations in two
variables. Since x + y + z = 6 describes a whole plane, there are clearly infinitely many solutions to
this equation. What if we add another equation, like in the system below:

x+y+z 6
x+3y+2z = 15?

How does this system differ from the systems of two equations we examined in Volume 1? There
are 3 variables among the equations rather than 2. If a point (x, y, z) satisfies both of these, then it
must be on both of the planes they represent in three dimensional Cartesian space. Hence, it is on
the line which is the intersection of the planes. Since a line also contains infinitely many points, we
once again can't find a finite number of solutions to the system. Let’s try adding another equation,
so we have the system

x+y+z = 6
x+3y+2z = 15
2x-2y+3z = -9

Since any solution to the first two equations lies on the line formed by the intersection of the
corresponding planes, the simultaneous solution to all three equations is the intersection of this line
with the third plane. In what ways can a line intersect a plane? The intersection can be a line (if the
line is in the plane), a point (the most common), or no intersection (if the line is parallel to the plane).

Since we know how to solve a two variable, two equation system, we solve the three equation
system by reducing it to a two variable one. We do this by eliminating z. This technique is the same
as in Volume 1. If we multiply the first equation by 2 and the second by -1, our system is

2x+2y+2z = 12

-x-3y-2z = -15
2x-2y+3z = -9,
< 143 »
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Now we add the first equation to the second, yielding

2x+2y+2z = 12
x-y = =3
2x-2y+3z = -9.

We write the first equation back in its original form (just divide by 2), then multiply it by 3 and the
last equation by —1 so we can eliminate z from that one too:

3x+3y+3z = 18
x-y = -3
-2 +2y-3z = 9.

Now we add the first equation to the third, which gives us

3x+3y+3z = 18
x—-y = -3
x+5y = 27.

Now neither of the last two equations has a z. We can solve these last two equations to find x = 2
and y = 5. We're not done though because we must go back and find z. Putting these x and y values
back into the first equation, we find z = —1; thus, our answer is (x, ¥,2) = (2,5,-1). The method
we have used is exactly the same as the elimination we used for systems of two equations in two
variables (just a hair more complicated).

Notice that for 3 variables, we need at least 3 equations to determine a single solution. If we
have fewer than three equations, there will either be no solutions (two equations determine parallel
planes) or infinitely many solutions (two equations determine planes that intersect in a line).

If we have three equations do we always have a single solution? No! Remember from our two
variable systems, that sometimes no solution exists (when the two lines are parallel), and sometimes
there are infinitely many solutions (when the lines are the same). Similarly, with three equations
and variables, two planes may be parallel, or one plane may be parallel to the intersection line of
the other two. In these cases, there are no solutions since there is no point where all three planes
intersect. Furthermore, the third plane might contain the entire intersection line of the other two
planes. Here, there are infinitely many solutions (every point on the line is on all three planes).

=

EXERCISE 13-1 Take three sheets of paper and investigate all the ways three planes can intersect
(or not intersect) each other. Determine how many solutions there are to the system of equations
representing the planes in each case. (For example, if all three sheets meet at a single point and not
a line, there is only one solution.)

EXAMPLE 13-1 Solve the following system of equations:

x+y+3z = 2
x-2y+2z = 1
2x—-y+5z = 3.
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Solution: First we eliminate x from the second equation by mbtractingﬂ\eﬁxstfmm&\eseamd,
yielding
x+y+3z = 2
-3y-z = -1
2x—y+5z = 3.

Now we use the first equation to eliminate x from the last by multiplying the first equation by 2and
subtracting the result from the third equation. This process yields

x+y+3z = 2
—3y-z = -1
—-3y-z = -1

The last two equations are the same. We can substitute any solution (¥,z2) to these twc_) equations
into the first equation to get a value of x such that (x, v, z) is a solution to all three equations. There
are infinitely many solutions (y,z) to the last two equations and each leads to a solution (x, y,-:) to
the original system. So there are infinitely many solutions (x, y,z) to the system of three equations.
EXERCISE 13-2 Name a few points which are solutions to the above system of equations.

EXERCISE 13-3 What would the solution to the prior example be if the third equation were
2x — y + 5z = 4 instead?

EXERCISE 134 Why did we choose to eliminate x from the equations first rather than eliminating
z as in our initial example?

Rather than carrying around all the x’s, y’s, and z’s, mathematicians have developed a shorthand,
methodical way to solve these (and much bigger) systems of linear equations. For this technique,
called Gaussian elimination, we copy the coefficients of our equations and the answers into a matrix
as shown below, where each row of the matrix represents one of the equations. The system

x+y+z = 4
x-2y+3z = 4
-2x-3y+z = -1

becomes

1 1 1 4
1 -2 3 4|,
-2 -3 1 -1

where the coefficients of x are in the first column, those of y in the second, those of z in the third, and
the constants (which are always placed on the other side of the equal sign) are in the fourth column.
We solve the system by first eliminating x from the last two equations through standard matrix row
operations. This is just like the operations we did to simplify determinants. If we add twice the first
row of the matrix to the third row, we get

1 1 14
1 -2 3 4.
0 -1 37
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Notice that the bottom left element is 0, so we have eliminated x from that equation. We eliminate x
from the middle equation by subtracting the first row from the second, which leaves

11 14
0-320
0 -137

Finally, we eliminate y from the last equation by multiplying the last row by 3,

1 1 1 4
0 -32 0,
0 -3 9 21

and then subtracting the second row from the resulting third row. Our final matrix then is

1 1 1 4
0 -32 0|
0 0 7 21

If we convert this back into equations, we have

x+y+z = 4
-3y+2z = 0
7z = 21

¥ The last equation immediately gives us z, which we can use in the second to get y, then the first to
‘ get x. Make sure you see how this method is the same as our elimination technique. WARNING:
Gaussian elimination works only if the coefficient of x is nonzero in the first equation. If it is zero,
you can’t use the first row to eliminate x from the other two equations. (Do you see why?) In such a

case, you need to let the first row represent one of the other equations.

EXAMPLE 13-2 What if Gaussian elimination results in

1 1 1

0 -3 2 ?
0 0 O

1 1 14

0 -3 2 0)?
0 0 0 4

Solution: For the first matrix, the corresponding equations are

o O W

How about

x+y+z = 4
=-3y+2z = 0
0 =0
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The last equation is always true. The second equation gives us infinitely many pairs (y, z) which we
can use to find x’s, so there are infinitely many solutions. For the second matrix, the equations are

X+y+z = 4
=3y+2z = 0
0 = 4

Although again we can use the second to find infinitely many pairs (y,z) and use these to get xs,
none of the resulting triplets (x, y, z) will solve the last equation, which is clearly never true. Since
the last equation can't ever be true, there is no point where all three can simultaneously be true.
Hence, there are no solutions to this system.

EXERCISE 13-5 Use Gaussian elimination to solve the system

4x+2y+z = 3
2x-3y+z = 6
x=-3y+2z = 6.

You may think three variable systems are simple enough to do without Gaussian elimination,
and the authors would certainly agree with you; however, as the systems get larger, the need for a
methodical approach like Gaussian elimination increases drastically (most notably if you have such
large systems that you need to program a computer to solve them—Gaussian elimination gives a
nice algorithmic routine).

A different approach to equation solving is to express a system of equations as AX = b, where A is
a matrix representing the coefficients in the equations, ¥ represents the variables, and b the constants.

Take the system
x+2y-3z = 6
4x+y—-2z2
-x+y-3z = 3.
We can represent this as

(313)E)-6)

because multiplying the two matrices on the left gives

x+2y-3z 6
dx+y-2z | =17,
-x+y-3z 3
which is the initial system of equations. If we can find A™, then we can solve the system of equations

by multiplying both sides of A¥ = b by A}, which gives A A% = A~'5, so

£=A"b.
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Hence, we can solve the system of equations A¥ = b uniquely if and only if A is invertible. If A is
not invertible, then we can’t find a unique solution to the system of equations. This isn’t the best
method to solve systems of linear equations because inverting large matrices is a painful process;
however, it does give us a good way to check if there is a solution.

Recall that a matrix is invertible if and only if its determinant is nonzero. Returning to the above
system, since

1 2 -3
4 1 -2|=12,
-11 -3

the inverse of A exists, and the system has a single solution.

EXAMPLE 13-3 Find all values of a such that the system

ax+2y+3z 1
2x+ay—3z

3x—y+2z

-5

cannot be solved for a unique solution (x, y, z).

Solution: Writing the system as AY = 1-7', we find the determinant of A as

a 2 3
2 a -3|=242-122-32.
3 -1 2

Setting this equal to zero, we find that the desired values of a are 2 = 8 and a = —2. (Try them and
see if there are any solutions (x, ¥, z) when a has these values.)

Speaking of bigger systems, what happens if we have more variables, like w + x + y +z = 7? How
many linear equations do we need in four variables to have a chance at finding a unique (i.e. there’s
only one) solution? For two variables, we need 2 equations; for three variables, we need 3. It stands
to reason that for four variables, we need 4 equations. Try to extend our earlier arguments for why
we need 3 equations for three variables to figure out why we need 4 equations for 4 variables.

Four variable and larger systems are usually too tedious to solve by hand. Linear equations
in many (by many we mean hundreds, or even thousands) variables are very common, so solving
them is very important, but for this task we usually (always) use a computer. There are some larger
systems which are solvable by hand, though, and these are the topic of the next section.

13.2 Convenient Systems

Some systems of equations have such a nice form that there’s a slick and easy way to solve them.
We'll start with a continuation of the last section. Solve the following system:
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Ww+w+x+y+z = 4
v+2w+x+y+z = 5
v+w+2x+y+z 6
v+w+x+2y+z 7
v+w+x+y+2z = 8

Before you start the tedious process of Gaussian elimination or the excruciating fnethod. of varlab_le
elimination, take a close look at the left side of the equations. They are very similar. This is our I_:lg
tip-off that there’s a slicker way to attack the problem. The key is finding a us.efu.l way to cc?mbme
the equations. In such a symmetric looking system, the idea that stands out is simply adding the
equations. If we add them all together we find

6v + 6w + 6x + 6y + 6z = 30,
so that o+ w + x + y + z = 5. How does this help? Look at the first equation. We have
Ww+w+x+y+z=v+@+w+x+y+z)=4

We found that the quantity in parentheses is 5, so the equation becomes v + 5=4,orv=-1. Wecan
use the same method to find the other variables, so that (v, w, x, ¥,z) = (-1,0,1,2, 3). Not too tough.

EXERCISE 13-6 Find (w, x, y,z) if

w+x+y = 20
w+x+z = 22
w+y+z = 24
x+y+z = 36.

This method is not restricted to linear systems. Try

a(@a+b) = 108
297
b(a+b) = i
Seeing the nice pattern on the left we try adding the equations, from which we have

297 729
a(a+b)+b(a+b)=(a+b)(a+b)=108+T=T,

Since (a + b)? = 729/4, we can take the square root to find a + b = +27/2. First we try a + b = 27/2.
Substituting this for a + b in the first equation gives

a (322) =108,

from which a = 8 and then b = 11/2. Similarly, ifa + b = —=27/2, we find a = -8 and b = -11/2. Thus,
we find the two solutions using a little craftiness.
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EXERCISE 13-7 Solve the following system of equations:

xy = 12V6
yz = 5412
zx = 48V3.

Atthe end of the chapter, you'll have a little more practice in attacking these ‘convenient’ systems.
If you see a nice patterned system of equations, there’s usually some way to combine the equations
through addition or multiplication to make finding the answer easy.

13.3 Symmetric Expressions and Advanced Factorizations

In the first volume, we investigated the sum and difference of two squares and of two cubes. For a
quick review, we'll list these relationships:

@ +b* = (a+b)?-2ab
a?=b0* = (@a-b)a+b)
@+ = (a+b)(a®-ab+1b?)
@ -b = (a-Db)a®+ab+b?).

We can extend the difference factorizations to any power n:

=

at=p" = (a _ b)({l"_l +an—2b g nn—3b2 ik nbn-2 4 bn—l)l

and the sum factorizations to any odd power 21 + 1:

&

a2n+1 + pA+l = (a+ b)(GZH —a?1p + a2n—2b2 — o= gh2n-1 o bz”).

We know to look for these factorizations from the fact thata = band a = —b are clearly solutions of
a" —b" = 0 and a?"*! + b?**1 = 0, respectively. (Why?)

EXERCISE 13-8 Prove the above factorizations for a” — b" and q2'+! 4 p2n+1 using sums of geometric
series.

We also looked in Volume 1 at squares and cubes of binomials, for example

(@+b? = a*+2ab+b?
(a-b? = a*-2ab+bp?
(@+b? = a®+3a%b+3ab%+ b
(@a-b? = a®-3a%b+3ab% -1,
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What if we introduce more variables? For example, what s (a + b + ¢)?? Let’s multiply it out:

(@+b+c)a+b+c)

= a@+b+c)+b@a+b+c)+c@+b+c)
= a+ab+ac+ba+b?+bc+ca+ch+c?
= a%+b%+c% +2(ab + be + ca).

(a+b+c)?

Another way we can find this product is to realize that in the expansion of (a + b+c)a+b+c)all

the resulting terms will be squares of the variables (like a?) or products of two of them (like ab). The
squares can only occur in one way, but the products of two variables can happen in two ways; for
example, ab can be made by taking an a from the first (¢ + b +c) and a b from the second or by taking
b from the first and a from the second. Hence, the coefficient of ab is 2. Following this logic, the
product is a? + b? + ¢ + 2(ab + bc + ca) since the squares occur once and the products twice.

EXAMPLE 13-4 Find (a + b + ) using the above logic.

Solution: Write the product as
(@a+b+c)a+b+c)a+b+o).

What types of terms can we have in the product? All terms will involve the product of three variables.
Some terms will be cubes, like a3. Others will be one variable times the square of another, like ab?.
Still others are the product of all three, or abc. Consider the cubes first. Each can only occur once, so
the expansion contains a> + b + c®. For the terms like ab?, the @ can come from any of the three terms
and the b’s then come from the other two terms. Hence, ab? occurs three times, as does ba?, bc2, etc.
Finally, we check out abc. We have 3 choices for the source of a, leaving 2 choices for the source of b,
and only 1 for that of c. Hence, abc occurs 6 times. Putting this all together, we have

@+b+c)@a+b+c)a+b+c)=a+b+c+3(ab? +ba* +ac +ca® +be* + cb?) + 6abe.,

How can we be sure we have all the terms? If we take the product of three quantities which each
contain three terms, we should have (3)(3)(3) = 27 terms. Above, we have 3 cubes, 3 each of the
terms like ab?, and 6 abc’s. Thus, there are 3 + 3(6) + 6 = 27 terms, so we found them all. If you're
skeptical, go ahead and multiply the product out completely and find out how the terms above arise.

EXERCISE 13-9 Find (a +b+c+d)’.

Reciprocal expressions are also very common. Let’s take a look. Write

1 1 1
X Yy z

with a common denominator. The common denominator is xyz; expressing each term with this
denominator we have
1 1 yz+xz+xy

—+-+
X Yy 2 xyz
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EXERCISE 13-10 Express
3 " 1 . 1 1
x2yz  yzw  zZwx  wixy

with a common denominator.

EXERCISE 13-11 Ifx+y+z=6and xyz = 2, then find
1 1 1

xy yz oz

13.4 More Polynomials

We'll start with a problem. Find x, y,and z if

x+y+z = 7
xy+yz+zx = -14
xyz = -120.

Seeing all of these symmetric sums, we might think to try some of the principles of the last section;
however, we've seen these expressions before. On page 60 we saw symmetric sums relating roots
to equations. In fact, from the given equations, we can deduce that x, y, and z are the roots of the
polynomial

£ -7 - 14t +120 = 0.
(Make sure you see how x, y, and z being the roots of this polynomial leads to the above system of
equations.) To find x, ¥, and z, we just factor using our polynomial solving techniques:

3 - 72 - 14t +120 = (t - 5)(t — 6)(t + 4) = 0.

Hence, x, y, and z are 5, 6, and —4.

EXERCISE 13-12 How many solutions (x, y, z) are there to the above system?
EXAMPLE 13-5 Find all (a,b,¢) if

20+3b+c = 11
6ab+2ac+3bc = 24
abc = -6.

Solution: These aren’t the nice symmetric equations we saw in our discussion of coefficients and
roots of a polynomial. We can make 24 + 3b + ¢ a symmetric sum by letting x = 22 and y = 3b. We
must also make these substitutions in the other two equations. Letting a = x/2 and b = y/3, they

become
x+y+c = 11
xyt+cx+yc = 24
(xyc)/6 = -6.
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Writing the last equation as xyc = -36, we find that we’ve made our desired three symmetric
equations. We won’t always be able to do this, but it’s worth a shot. Thus, x, y, and c are the roots of

£ —11£2 +24t+ 36 = 0.

Factoring this yields
(t-6)t—6)(t+1)=0,

so the x, y, and c are 6, 6, and —1. So which one’s which? Like you should have seen in the previous
exercise, we have to try all possible ways. If we let (x, y,c) = (6,6,—1), we find (a, b,c)=(3,2,-1). If
we let (x,y,¢) = (6,-1,6), we find (a,b,c) = (3,-1/3,6), and finally, for (x,y,c) = (-1,6,6), we have
(a,b,c) = (-1/2,2,6). These are the three solutions for 4, b, and c.

We're not done with polynomials yet! How many points do we need to determine the graph of
aline? Right, just two. How about a quadratic? We need three. For example, if the points are (1,5),
(2,11), and (-1, -1), we write the quadratic as y = ax? + bx + ¢ and using the three points, we write

a+b+c = 5
4a+2b+c = 11
a-b+c = -1.

Using the techniques from the first section of this chapter, we find that (a,b,¢) = (1,3,1), so our
quadratic is y = x* + 3x + 1. Thus, if three points on one quadratic are the same as three points on
another, then the two quadratics must be the same. For the same reason, four points determine a
cubic, five determine a quartic, etc.

In the same spirit as above, what can we say about a linear equation with two different roots?
Let the equation be ax + b = 0 and the roots be x; and x,. Thus, we have

ax1+b = 0 and

axa+b = 0.
Subtracting, we have a(x; — x2) = 0, so since x; and x; are different, 2 must be 0 and so must b. Thus,
if we find a linear equation with two different roots, the equation is 0 everywhere.

Extending the above argument, we find that any quadratic with three distinct roots is everywhere
0, any cubic with four distinct roots is everywhere 0, and so on. So what kind of problem does this

help us on?

P that
rove tha 1 ) 1 a 1 1 ‘5*»\
ala-b)a-c) blb-c)b—-a) c(c-a)c—b) abc
for all sets of distinct nonzero numbers {a, b, c}. (M&IQ 1993)

Rather than showing that the left side equals 1/abc, we show that

1 1 1 1

2a—b)a—0) bb-ob-a)  cle—ayc=b) abc >
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Writing the left side with the common denominator abc(a — b)(a@ — ¢)(b — ¢), we have

be(b - ¢) — ac(a — c) + ab(a — b) — (a — b)(@a — c)(b — )
abc(a —b)(@a—c)(b-c) '

We can show that this is 0 by showing that the numerator is 0. Look at the numerator as a polynomial
in ¢, meaning let a and b be constants and c be a variable, or

f(c) = be(b - c) — ac(a — ¢) + ab(a - b) — (a — b)(@a — ¢)(b - ¢).

Since each term in f(c) has degree 2 in c, meaning that the power of ¢ in each is at most ¢2 (for
example, the first term be(b — ¢) is Bc — be2), f(c) is a quadratic. If we can show that this quadratic
has 3 different roots, then f(c) = 0 for all c. First let ¢ = a; then we have

f(a) = ba(b — a) — a*(0) + ab(a — b) — (a = b)(0)(b —a) = 0,

so a is a root of f(c). Similarly, f(b) = 0 and f(0) = 0. Since 4, b, and 0 are three distinct roots of the
quadratic f(c), f(c) = 0 everywhere, or

be(b—c)—ac(a—c)+ab(a—b)—(@a-b)a—c)(b—c)=0.
Thus

be(b—c) —ac(a—c) +abla—b)—(a—b)a—c)(b—c) _ 0
abc(a - b)(a —c)(b-c) e
and we have proven the identity.

Of course, you could use a ton of algebra to prove this identity, but this method is much faster
for complex identities. Simpler identities are easier to prove with direct algebra.

EXERCISE 13-13 Prove that

b+c - c+a + a+b _
(@a-b)a-c) (-c)b-a) (c—a)c—b)

for all sets of distinct nonzero numbers {a, b, c}.

0

13.5 Squares and Cubes

In Volume 1, we used squaring and cubing to solve equations with the variable inside the square
root or the cube root. For example, to solve

Vx+3=2,

we cube the equation to find x +3 =8,s0x = 5.

These techniques are useful for other types of problems as well. For example, suppose we want
to simplify /6 + V11 — v/6 — VII. It's not obvious that we can simplify /6 + V11 in the way we
can write /4 +2v3 = 1+ V3. (See if you can simplify /6 + V11 on your own!) Instead, we let

x= \/6+\/1_1—\/6—‘/ﬁ.
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To clear out the square roots, square both sides, leaving
X=6+V11-2V36-11+6-V11=12-10=2.
Hence, x = ¥2. (Why not x = —v2?)
Squaring or cubing often simplifies equations involving radicals, so try it when all else fails.
13.6 Using Graphing
We'll cover a whole genre of problems with a simple example.

For how many positive numbers x does cos x = x/8? (MA® 1987)

We can’t possibly hope to actually find the solutions, but even a rough ¥
sketch will enable us to count the solutions. We graph y = cos x (solid line) I\ o
and y = x/8 (dashed line). Where these graphs meet, we have cosx = x/8 | M-~~~ 7/\\
and hence a solution to our equation. There are three intersections of the l it
graphs, so there are 3 solutions.

Problems to Solve for Chapter 13

185. Ifa # b,a® — b® = 19x3, and a — b = x, find a in terms of x. (AHSME 1975)

186. Solve the system of equations

x+y)(x+y+z) = 66
(y+2)(x+y+z) = 99
z+x)x+y+z) = 77.

(M&IQ 1992)

187. If a, b, and c are real numbers such that a? + b> + ¢ = 1, then what is the minimum value of
ab + bc + ca? (MAS 1987)

188. Find the prime factorization of 22 + 1. (MA® 1991)

189. Four positive integers are given. We select any three of these integers, find their arithmetic
average, and add this result to the fourth integer. In this way, the numbers 29, 23, 21, and 17 are
obtained. What are the four original numbers? (AHSME 1955)

190. Simplify the product below. (AHSME 1981)

( 1 )(1 1 1)( 1 )(1 1 1)
—t-t- [ — )| =+ —=+—.
x+y+z)\x Yy z/\xy+yz+zx)\xy yz zx
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191. Evaluate

\/‘/§+2_+_\_/_\/§—2 _
V5 +1

=243

(AHSME 1970)
192. Find all ordered triples (x, y, z) which satisfy
x+y-z = 0
2zx—-xy+yz = 27
xyz = 54.
(Mandelbrot /1)

193. The simultaneous system below has no solution for what real values of n?

1
1
1

nx+y
ny+z
X+nz

1]

(AHSME 1973)

194. Prove that it is not possible to assign the integers 1,2, 3, ..., 20 to the twenty vertices of a regular
dodecahedron so that the five numbers at the vertices of each of the twelve pentagonal faces have
the same sum. (USAMTS 1)

195. Consider the system of equations:

ay + 8a; + 27a3 + 64a; = 1
8a; + 27a; + 64a3 + 125a4 27
27a1 + 64a; + 125a3 + 216a3 = 125
64a1 + 125a; + 216a3 + 3430, = 343,

These four equations determine ay, a2, a3, and a4. Show that
a1(x +1)° +ay(x +2)° +a3(x + 3 + a4(x +4)° = Qx + 1)3,

i.e., these two polynomials are identically the same. Use this to show that a; + a, + a3 +a; = 8 and
that 64a; + 27a; + 8a3 + a4 = 729. (Mandelbrot #3)

196. In a rectangular solid, the area of the top face is 135, the area of the front face is 30, and the area
of the right face is 50. Find the volume of the solid. (MA® 1990) ’

197. Prove the identity

beb+c)  _calc+a)  aba+b)
(@a-b)a=c) (b-c)b-a) (c—a)(C—b)=a+b+c

for distinct nonzero numbers 4, b, and ¢. (M&IQ 1993)

198. Factor the expression x? - y* = 2% + 2yz + x + y — z completely. (AHSME 1963)
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199. If a, b, and ¢ are non-zero real numbers such that

a+b-c _a-b+c_-atb+c
c b a

’

then find all possible values of
(@a+Db)(b+c)c+a)
abc ’
(AHSME 1978)

200. Find 52 + 7b + 9c if a, b, and c satisfy the equations

ab = 2(a+b)
bc = 3(b+c)
ca = 4(c+a).

(USAMTS 1)
201. Find 22 if Yx+ 9 — Yx =9 = 3. (AHSME 1963)

202. Reduce the fraction
a2 +b% —c2 +2ab
a2 +c2-b2+2ac’
(AHSME 1960)

203. Find the sum \3/5+2\/ﬁ+ {/5—2@.

204. If xyz = ¥ + y + 2> = 4 and xy? + x2y + yz% + y?z + zx* + z%x = 12, then find the real value of
xy + Yz + zx. (Mandelbrot #3)

205. Let g(x) = x° + x* + x° + x2 + x + 1. What is the remainder when the polynomial g(x'?) is divided
by the polynomial g(x)? (AHSME 1977)

206. Find all triples of positive real numbers (x, y, z) which satisfy the following system: K
F-5- = 16
Ve-fj-Vz = 8
L A

(MOP)

207. Prove that the equation 442 + 42 = b? + b has no positive integer solutions (a, b). (Canada 1977)
208. Find the positive integer solutions (x, y) of the equation X +3= y(x +2). (M&IQ 1992) §\
209. Let 4, b, and ¢ be real numbers such that \S»\
(bc=a®) 1 +(a-b*) 1+ @b-c2) =0.

Prove that
a(bc —a?) % + b(ca - b?)2 + c(ab - 2) 2 = 0.

(IMO 1985)
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the BIG PICTURE

Mathematics is generally seen as a European endeavor, passed from the Greeks to the
Romans to the Europeans of the Renaissance, and this is reflected in the nomenclature we use.
However, many of the discoveries we now refer to by European names we actually anticipated
by Indian or Chinese mathematicians.

For example, the “Gaussian elimination” we used in this chapter to solve sets of linear
equations was used in the Chinese Nine Chapters on the Mathematical Art, written around
250 B.C.! (Gauss lived around 1800.) Amazingly, the Chinese work used notation very similar
to what we use today, forming the coefficients into a grid and using operations to simplify the
grid.

Similarly, the “Pascal’s Triangle” which puts the binomial coefficients into a simple triangular
pattern was developed in China, in almost exactly its modern form, as early as 1100. (Pascal
lived in the 1600’s.) Another modern method anticipated by the Chinese was “Horner’s
method,” a simple numerical algorithm for finding the roots of a polynomial which was
rediscovered by Horner in the 1800’s.

So why don’t we call these formulas and methods by more accurate names? This is an
intricate historical question, but the simple answer is that not enough cultural exchange took
place with China for Chinese methods to diffuse west. It is for similar reasons that the math
developed by the Maya culture of Mexico never interacted with the stream from which modern
math came. On the other hand, a great deal of Indian, Arabic, and Egyptian math came to
Europe through trade. Hence the name algebra, from the Arabic al-jabr. The Arabs preserved
and extended the methods of the Greeks; Ptolemy’s major work in astronomy is still known as
Almagest, Arabic for “the great work.” Both the Arabs and Indians had the quadratic formula,
and much geometry lost to Europe.

While historians of math universally acknowledge the contributions and achievements of the
mathematicians of other cultures, those contributions still get the short shrift in nomenclature.
Except for the odd Brahmagupta’s or Chinese Remainder Theorem, our mathematical names
come almost entirely from European rediscoverers.
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Chapter 14

Inequalities

In Volume 1 we discussed how to work with inequalities which are sometimes true. For eXfimple,
x > 0 is only true when x is positive. In this chapter, we will work with inequalities which are
always true, like the Trivial Inequality we discussed in Volume 1, x* > 0 for all real numbers x. Many
readers will likely have never seen anything like the problems at the end of this chapter before. For
this reason (and because inequality problems are lots of fun), we have gathered many problems to
try out. Once you've learned how to work with inequalities, you'll likely find them as interesting as

we do.

14.1 Trivial Inequality Revisited
The square of any real number is nonnegative. It’s that simple. For example,
Prove that cos 26 + sin? 0 is nonnegative for all angles 6.

Our strategy here is to manipulate the given expression to the square of a real quantity. Since
0520 + sin? 6 = cos? 8 — sin® 6 + sin 6 = cos? 6,

and cos? 6 > 0 because cos? 8 is the square of cos 8, we conclude that cos 20 + sin® 6 > 0.

EXERCISE 14-1 Prove that 4x% — 12xy + 9y > 0 for all real number pairs (x, y).

EXAMPLE 14-1 Find the minimum value of x2 + 2x + 2.

Solution: Since ¥2 + 2x + 2 = (x + 1)? + 1, the minimum is 1 because (x + 1)2 > 0.

EXERCISE 14-2 Show that (x2 + 1)(y?* + 1) > (xy + 1)? for all x and y.

The Trivial Inequality is the most basic general (i.e. always true) inequality, and can be used in
many, many ways. If no method is clear in solving an inequality problem, this is often the best place

to start.

< 159 »
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14.2 Arithmetic Mean-Geometric Mean Inequality

The Arithmetic Mean-Geometric Mean Inequality, commonly called AM-GM, stat‘es that the arith-
metic mean of a set of positive numbers is greater than or equal to the geometric mean of t?lose
numbers. Recall that the arithmetic mean of a set of n numbers is the sum of the numbers dxyxded
by n and the geometric mean is the nth root of the product of the numbers. Hence, we can write

ay+ay+az+---+a
Rl Z> {ayazaz -+ -an,

n

for positive numbers ay, a, a3, .. ., ay.

WARNING: AM-GM only works if all the numbers are positive! Can you find a counterexample
if some are negative?

@ c

EXAMPLE 14-2 Prove the AM-GM Inequality for n = 2.

Solution: With n = 2, AM-GM asserts that for positive numbers a and b,

“%bz ab.

This brings us to a most important inequality solving technique: working backwards. We use
reversible steps to manipulate what we're trying to prove into something that’s easy to prove. For
the given problem, we start by multiplying both sides by 2 and squaring, yielding

M

a% + 2ab + b2 > 4ab.

Subtracting 4ab from both sides, we have a* — 2ab + b? > 0. The left side of this is just (@ — b)%, which
% as the square of a real number is clearly always nonnegative.

‘{ WARNING: A key aspect of working backwards is checking that the logic works when used in
reverse order. Thus we must check that we can start from (a — b)* > 0, which we know is true, to
obtain (a + b)/2 = Vab, which we want to prove is true. The only step that we may balk at is taking
the square root of both sides of 4% +2ab + b? > 4ab to get (a + b) > 2 Vab; we can do this because we
restrict a and b to positive numbers.

<O £ When writing proofs for papers or contests, you should present your solution working forwards,
even if you find the solution working backwards.

As the above proof suggests, many problems which can be solved with AM-GM can also be
handled using the Trivial Inequality and lots of algebra. In general, this is not recommended,
because AM-GM and the other inequalities we’ll introduce in this chapter reduce the amount of
work enormously.

To prove the AM-GM Inequality, we'll start with a lemma.

Lemma. Suppose x and y are positive real numbers such that x > y. If we decrease x and
increase y by some positive quantity € such thatx — € > y + ¢, then (x — €)(y + €) > xy.
Hence, by subtracting € from x and adding it to y, we leave the average of the two
numbers unchanged while increasing their product.
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The proof of the lemma is pretty simple. We wish to show that (x - €)(y +¢€) —xy > 0. Expanding
the product (x — €)(y + €), we find that

(x—€)y+e)—xy=(x—ye—¢€
Since x — € 2 y + €, we have x — y > 2¢, so
(x—€)(y+e)-xy>22-€e*=€*20.

Hence, we conclude that (x — €)(y + €) > xy.

Now on to our proof of AM-GM. Suppose ay, a3, .. ., @, are positive real numbers w_ith average
A and product P. If all the g; are equal, then both the arithmetic mean and the geometric mean are
equal to A. (Why?) Suppose not all 4; equal A. Let a; be the one number closest to A w'xthout bem.g
equal to A. Without loss of generality, let 2; < A. Since the average of the numbers is A, there is
some member of the set of numbers greater than A. Let a; be the greatest of these numbers. Clearly
we must haveay — A > A —aj sincea j is closer to A than any other 4; not equal to A.

We now use our lemma. Replace a; with A and a with a; — (A — a;). Note that a; — (A—aj) =
aj + (A — a;), so we can apply our lemma with (A - a;) as our €. By our lemma, the average of the
numbers in the new set is the same, but the product is now higher. If we continue this process, we
make one of the members of the set equal to A with each application of the process. Hence, in some
finite number of steps, we will make all the numbers equal to A. Thus, we prove that of all sets of
positive numbers with average A, the set with maximum product has all elements equal to A. Thus,
the maximum possible value of the geometric mean of the set is A. This maximum only occurs when
all elements equal A (since if one or more are not equal to A, the product of the numbers can be
increased by the process above).

Note that we have made a big deal of when the equality holds (meaning the equality portion O>
of the nonstrict inequality occurs). This is a very important part of inequality problems, so don’t
overlook it.

One very useful technique in applying AM-GM is breaking the question into parts.

\l/

EXAMPLE 14-3 Prove that for all positive numbers x, y, and z,
C+yP+22 2y +yz+az.

Proof: Seeing the sum on the greater than side, we may think to try AM-GM directly, but this
yields (x?+y?+22)/3 > {/x?y?z?, which clearly isn’t too helpful. If we look at the less than side, we see

products of two numbers, which suggests using AM-GM on just x* and y?, yielding (32 + 12)/2 > xy.
Similarly, we can show (¥ +2%)/2 2 xz and (y* +2z?)/2 2 yz. Adding these three inequalities gives
x% +y? + 22 > xy + xz + yz as desired. Notice how we divided the inequality to be proven into three

separate inequalities.
EXERCISE 14-3 When does equality hold in the previous example?
EXAMPLE 14-4 Show that

2y + 22+ 2% > Pyz + xyPz + xy2P.
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Solution: Seeing the products like x2y2 on the left side, we may be tempted to try AM-GM,
yielding
4, 4
oA g ¥ > \’2_1/2

2 .

‘ WARNING: Why is this not likely to be useful? Because in the expression we are trying t(:n prove,
x2y? is on the greater side rather than the lesser side like in our above AM-GM result. Don'’t spend
too long chasing dead ends like this. With AM-GM the solution is usually pfetty straightforward.
Since this problem looks similar in form to the last one, let’s try the same technique. We use AM-GM

on x?y? and x2z? to get
2
22 Z X > /(2y2)(x222).

Notice that the x2? is now on the greater side as desired. Simplifying the right side gives us the
inequality (x?y? + x?z2)/2 > x%yz. Aha! Just like last time, we can do this twice mo;e and add the
three resulting inequalities to prove the given inequality. (When does equality occur?)

EXERCISE 14-4 Show that § + b > 2 for all positive pairs (a,b), and find where equality holds.

14.3 Cauchy’s Inequality

Recall from our discussion of vectors that the dot product of two vectors ¥'and ¥ is
X+ 7= llxllllyll cos 6,
where 0 is the angle between the two vectors. Since cos6 < 1, |lx|lllyllcos 6 < [Ixllllyll. Thus,

%-7 < |Ixllllyll. Writing ¥and 7 in terms of their Cartesian coordinates, they are (x1 x2 - x,,) and
(yl Y2 - y,.). Using these coordinates and squaring both sides of the inequality ¥ i < ||x|||yll,
we have

Gayr+ X2y + o+ Xy S+ 3+ + )W+ 3+ + 1R)

This very important inequality is called Cauchy’s Inequality, or sometimes the Cauchy-Schwarz
Inequality.

&

N

EXAMPLE 14-5 Use the above proof to determine the equality condition for Cauchy’s Inequality.

Solution: The inequality entered our problem when we noted that cos < 1. Thus, equal-
ity holds only if cos € = 1, 0r 6 = 0°. In this case, ¥and 7 are in the same direction so the ratio of the
components of ¥ to the components of is constant, or

X1 _ I_z _ _ x—"

nooy Yn )

EXERCISE 14-5 Prove that
(a1x + b1)2 + (axx + b2)2 + (a3x + b3)2 +ooe o (@nx + b")z >0

and use this fact to prove Cauchy’s Inequality. Hint: Write the left side as a quadratic equation
in x and note that a quadratic equation is nonnegative for all x if and only if the discriminant is
nonpositive.

&
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As the form of Cauchy’s Inequality suggests, it is most obviously useful for problems involving
products of sums or squares of sums,

EXAMPLE 14-6 Prove that
s (1+2+---np
n

P+2sooct

for all integers n > 1.

Proof: Seeing the square of a sum, we think of Cauchy’s Inequality. We multiply both sides
by n to isolate the square of a sum as in Cauchy’s Inequality, leaving

(PP+224can®)n)>(1+2+---+np
If we write 1 as (12 + 12 + - - + 12), we have
(P42 4 ) (124124 +1) 2 (1 42+ --- + 1),

which is true by Cauchy’s Inequality. (Note once again how we have worked backwards to solve
this problem. Show that each of the steps we have taken is reversible.)

EXAMPLE 14-7 Show that if a and B are angles in the first quadrant, then

3 w3
Cos™ sm-a
bk i) —=B) >
( cosp | sinp ) cos(a—p) > 1.
(Mandelbrot #3)

Proof: Writing cos(a — B) = cosa cos f + sin asin §, the left hand side becomes

( cosla sina

— - Ccos @ cos B + sin a sin B).
cosf smﬂ)( P 2

Seeing the product of sums, we apply Cauchy:

3

(cos3 a sinfa

"wosB  sinp ) (cosacosf + sinasinf) >

3 3 “
<‘/<CCO:>S;') (cosacosB) + \/(S;\n;)(sinasinﬁ)) .

2
( cos4a+\/sin4a) =(cosza+sinza)2=1,

so we have our desired inequality.

The lesser side is
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14.4 Maximization and Minimization

In algebra class you were probably asked a question like ‘If Farmer Bob has 40 feet of fence, what is
the largest rectangular field that Farmer Bob can fence off?’ You were then taught to let x and y be
the dimensions of the field, so 2x + 2y = 40. The area is xy = x(20 —x), and you completed the square
to find

Area = —(x — 10)? + 100.

By the Trivial Inequality the maXimum area is 100 and occurs when x = y = 10, or when the field is
a square. This is a fine approach, but what if we were told that Farmer Bob has 96 square inches of
wrapping paper and asked to find the volume of the largest rectangular box he can wrap with the
paper. Now we have three variables and our completing the squares method isn’t quite as helpful.
For these optimization (either minimization or maximization) problems, we can often apply
AM-GM, Cauchy’s Inequality, or the Trivial Inequality. For Farmer Bob’s wrapping problem, we let
X, Y, and z be the dimensions of the box. The surface area of the box is to be covered by the paper, so

2(xy + yz + zx) = 96.

We wish to maximize xyz. Applying AM-GM to the three terms in the sum above, we have

HEEIE > oD@ = (.

Using our first equation, we find xyz < 64, so 64 is the maximum volume. (How did we know to
get xyz on the lesser side?) Applying the equality condition for AM-GM we further find that the
box attains this maximum volume when xy = yz = zx, or x = y = z = 4. Thus, the box of maximum

7 volume is a cube.
‘{ WARNING: Although boxes are usually cubes and rectangles usually squares in this type of
problem, don’t assume this will be the case every time. You must use the equality conditions of
inequality to prove it. Furthermore, your assumption may not always be correct!

It is very important to show that equality can be attained, because if it cannot, then we haven’t
found the maximum. For example, if we are told that x is a two digit number and asked to find
its maximum value, we cannot assume from the true statement x < 100 that 100 is the maximum,
because 100 cannot be attained. Thus, optimization problems are two part problems: show that the
desired quantity can be no higher or lower than the optimal value, and show that the optimal value
can be attained.

=

EXAMPLE 14-8 1f xyz = 27 and , y, and z are positive, find the minimum value of x + y + z.

Solution: Since we are minimizing, we want x + y + z on the greater side. (Why?) Using
AM-GM we have X+y+z

3 > {xyz = 3.

Hence x + y + z > 9, where equality is attained when x = y = z = 3. Thus, our minimum value is 9.

EXERCISE 14-6 Find the maximum value of xyz if 2x + y + z = 12,
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We are sometimes interested in finding the smallest or the largest member of a set. We denote
the smallest number in set A by min A and the largest by max A. Hence, by min(x, y,z}, we mean
the smallest of the numbers x, y, and z. Furthermore, by max min({x, y,z], we mean consider all

sets {x, y,z}, find the minimum element of each set, then find the maximum of all these minimum
elements.

EXAMPLE 14-9 If x + y = 4, find max min|x, y).

Solution: Without loss of generality, let x > y. Hence min(x,y} = y. Thus, we are trying to
maximize y such that y < x and x + y=4.Sincex+y>y+y=2y wehaved 2 2y,soy < 2. Thus,

the maximum value of y is 2. We must show that this value can be attained, which it can when
x=y=2

EXERCISE 14-7 We might try to use the above “without loss of generality let x > y” approach on
the following:

If2x + y = 4, find max min|x, yl.
Could we? Why or why not?

14.5 Geometry and Inequalities

Because there are so many symmetric expressions in geometry, such as Heron’s formula or the
perimeter of a triangle, there are very many inequalities which can be derived with the help of
geometrical principles. One purely geometric tool which is often useful in attacking geometric
inequalities is the Triangle Inequality, which states that the sum of any two sides of a triangle is
greater than the third side. (Prove this inequality!) Since the Triangle Inequality is a strict inequality
in geometry (meaning there can never be equality), it is generally not useful on nonstrict inequality
problems.

This section will mostly be examples, with a few helpful hints scattered about. In these problems,
you will need to use many geometric relations as well as the Triangle Inequality, the other inequalities
in this chapter, and the ever important fact that cos 6 and sin 6 are less than or equal to 1.

EXAMPLE 14-10 Prove that the cube of the perimeter of a triangle is greater than or equal to 108
times the product of its area and its circumradius.
Proof: First we write out what we are asked to prove:
(a+b+c)® > 108[ABC]R.
Seeing the product [ABC]R, we recall that 4{ABC]R = abc, so our expression becomes
(a+b+c)® > 27abc.

Taking the cube root and dividing by 3 we have

a+g+c2 3’_ab,

which is true by AM-GM. (Are all of our steps reversible?)
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EXERCISE 14-8 Use the previous result to prove that p’> = 108[ABCIR if and only if LAEC is
equilateral.

EXAMPLE 14-11 Show that if a quadrilateral is cyclic with consecutive sides 2, b, c,and d and

diagonals p and g, then
pq < \/(a? + P)(c? + d&2).

(ARML 1987)

Proof: From Ptolemy’s Theorem (page 35) we have ac + bd = pg; hence the above expression
becomes (ac + bd) < /(a2 + b2)(c2 + d?). Squaring this inequality, we have
@ + )3 +d?) > (ac + bd)?,
which is just Cauchy’s Inequality and therefore true.

As you do more work with geometric inequalities, you'll find that knowing the few important
ways to find the area of a triangle is very useful in solving geometric inequalities.

14.6 Wrap-Up and Parting Hints

Most of the very important inequality solving techniques are discussed among the previous sections,
but there are still a couple approaches we haven’t seen.

»>If A > Band B > C, then A > C. Sometimes you may find it necessary to use an intermediate
expression, like B above, to show that A > C.

> If A and B are positive and 1/A > 1/B, then B > A. Sometimes you will be given an inequality
whose denominators are easier to work with than the numerators. Take reciprocals and reverse the
inequality sign; perhaps this will simplify the problem.

> Don'’t forget the Triangle Inequality for complex numbers when faced with [x + yi! Remember
that |x + yl < [x| + |yl.

EXAMPLE 14-12 As a parting shot, we introduce a few more advanced inequalities. We have
introduced the arithmetic mean and the geometric mean, but we can also define a harmonic mean
(HM) as the reciprocal of the average of the reciprocals, and a root mean square (RMS) as the square
root of the average of the squares. For any set of positive numbers (ay, 4, ... 4,)}, we then have

RMS > AM > GM > HM,
or 2 2
v
B2+ai+---+al _ay+ay+---+a, %
1772 %> >VYmar-- g > ——°
n = n = 142 an_, 1 1-

i el R
ay a 2,

We can extend this discussion past the root mean square to even higher powers to obtain the
Power Mean Inequality, which states that if m > n, then

m Pl m n
Va, +ag 4 +ap {/a, +a)+ - +af
k - k -
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EXERCISE 14-9 Write the Power Mean Inequality in summation notation.
EXERCISE 14-10 Show that for m = 2, n = 1, the Power Mean Inequality is merely RMS > AM.

Problems to Solve for Chapter 14

If inequalities are new to you, be patient. It takes practice to get good at them!
210. If x and y are real and x? + y? = 1, compute the maximum value of (x + y)?. (ARML 1985)

211. Let xyz = 1 for positive x, y, z. Show that min{x+y, x +2, y+z) has no maximum value. (Mandelbrot
#1)

212. Show that if « and B are first quadrant angles and

cos’a  sin’a _
( cosp | sinp ) wosfa=f) =1,

then a = B. (Mandelbrot #3)

213. If A, B, C,and D are positive numbers such that A+ 2B+3C+4D = 8, then what is the maximum
value of ABCD? (MA@ 1991)

214. For positive x, y, z such that xyz = 1, use the AM-GM Inequality to show that min max{x +y, x +
z,y +z} = 2. (Mandelbrot #1)

215. For positive x, y, z such that x + y + z = 3, show that max min{xy, xz, yz} = 1. (Mandelbrot #1)

216. Show that for any two positive real numbers a and b,

a+b a?2+b2 a+b
.__._v > [ ——
2 ab 2 2 27

by showing that this inequality is equivalent to

(LZL)Z > /(2ab)(a? + b?)

and then using the AM-GM Inequality. (Mandelbrot #1)

217. Letry, 7,..., Iy be n real numbers each greater than zero. Prove that for any real number x > 0

’

rit+ra+--+ry\"
(x+r1)(x+r2)~--(x+r,.)s(x+#) ,

(Mandelbrot #3)

218. What is the smallest positive integer 7 such that yn — Vn—1 < .01? (AHSME 1978)
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10 . ; :

219. Let x be a real number and let f(x) = 3. |x — Fil, where F; is the ith Fibonacci number; ie.
=

Fi=F,=1and F, = F,_1 + F,— forn > 2. Fin'd the minimum value of f(x). (USAMTS 2)

\ 220. Letry, 12,..., Ty be n real numbers each greater than zero. Prove that for any real number x > 0,

+r)x+m) - (xr) > (x+ ¥z 7n) -
(Mandelbrot #3)
221. If x® - 12x? + ax — 64 has real, nonnegative roots, find a. (Mandelbrot #1)

222. Prove that yn < n! for every positive integer n. (USAMTS 1)

223. Leta, b, ¢, and d be the areas of the triangular faces of a tetrahedron, and let kg, by, hc, and hy be
the corresponding altitudes of the tetrahedron. If V denotes the volume of the tetrahedron, prove
that

(@+b+c+d)(hy +hy+he + hy) > 48V.
(USAMTS 3)

224. Find the smallest integer 7 such that
(R+P+2) <n(P+yt+2Y)
for all real numbers x, y, and z. (AHSME 1977)
225. Cars A and B travel the same distance. Car A travels half the distance at « miles per hour and
half at v miles per hour. Car B travels half the time at u miles per hour and half at v miles per hour.

The average speed of Car A is x miles per hour and that of Car B is y miles per hour. Prove that
x < y. (AHSME 1973)

226. Prove that the product of two sides of a triangle is always greater than the product of the
diameters of the inscribed circle and the circumscribed circle. (IMO 1985)

227. Triangle ABC has side lengths AB = 6, AC = 5, and BC = 4. A point P in the interior of AABC is
a distance ! from BC, a distance m from AC, and a distance n from AB. If 2 + m? + n? = 225/44, then
find 1. (Mandelbrot #2)

/

228. Show that for all positive a and b with root mean square RMS, arithmetic mean AM, geometric
mean GM, and harmonic mean HM, we have RMS — AM > GM — HM. (Mandelbrot #1)

229, If a, b, and c are each positive and a + b + ¢ = 6, show that
2 2 2
(4 1)+ (o 1)+ (1) 2
b c a 4

'5\ 230. Ata wedding reception  guests have assembled into m groups to converse. (The groups are not
necessarily equal sized.) The host is preparing m square cakes, each with an ornate ribbon adorning
its perimeter, to serve to the m groups. No guest is allowed to have more than 25 cm? of cake. Prove
that no more than 20 y/mn cm of ribbon is needed to embellish the m cakes. (Mandelbrot #3)

77

(ARML 1987)
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231. Let ABCD be a tetrahedron having each sum of opposite edges equal to 1. Prove that §\
3
ra+rg+rc+rp < 3
where ra, r, rc, rp are the inradii of the faces, equality holding if ABCD is regular. (IMO 1986)

232. The circumcircle k of acute AABC has radius r. The bisectors of the angles of the triangle 5’\
intersect the circle again in the points A’, B’ and C’. If P and Q are the areas of AABC and AA’B'C’,
respectively, prove the inequality 16Q3 > 27r4P. (IMO 1989)

233. Prove that if x; > 0 for all i then S~

(x{9+x%9+---+x,1,9) (x?3+x§3+~--+x33) >

(20 4 04 ) (22 o+ 25
and find when equality holds. (Mandelbrot #3)

234. Let M be an interior point of the triangle ABC such that ZAMC = 90°, ZAMB = 150°, and $\
£BMC = 120°. The circumcenters of the triangles AMC, AMB, and BMC are P, Q, and R respectively.
Prove that the area of APQR is greater than or equal to the area of AABC. (Bulgaria 1993)

Chapter 15 Combinatorics page 170
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Chapter 15

Combinatorics

15.1 Identities

Combinatorics is the science of counting. A large part of this science is the establishment of identities,
which allow a complex expression to be written much more simply. For example, in Volume 1, we
used sets to show that for any n,

(8) ' (:) * @ et (:) =& (15.1)

This identity allows us to replace the complicated left hand side of (15.1) with the terse right side.
In this chapter we’ll look at some of the prettier and more useful combinatorial identities.

15.2 Pascal’s Identity

Consider a set of 1 objects. In how many ways can we choose k of them? If you have read Volume 1,
you should know that we can do it in

n\ _ n!

k) K@n-k)
ways.

However, we need not be so direct about things. Consider some particular one of the n objects,

and call it A. Then we can choose k objects including A in only (}~]) ways, because after including

A, we must pick k — 1 of the remaining 7 - 1 to include in our k.

EXERCISE 15-1 In how many ways can we choose k objects not including A?

Since our final group of k objects either contains A or doesn’t, we can choose the group in
(2-1) + (";") ways. But we can also pick the group in (}) ways by our original argument! We thus

have

n—1 (B 1\ _/n

k-1 k) \k
for any n and k. This is called Pascal’s identity (though it was evidently known in much of Asia at
least 300 years before Pascal observed it).

2
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EXAMPLE 15-1 Let's try a concrete example. Withn = 6 and k = 4, Pascal’s identity asserts that

(g) * (i) = (2)' Calculating the combinations (do it yourself), this becomes 10 + 5 = 15, which is
true.

EXERCISE 15-2 Test some more possible n and k.

EXERCISE 15-3 Make sure you understand the argument by which we derived Pascal’s identity;
arguments like this are very common. What happens if k = 0?

One interesting thing about combinatorial identities is that once you understand them, you can
usually prove them in at least two extremely different ways. For example, Pascal’s identity can be
confirmed by going directly back to the definition of (’,:)

(n—1)+<n—1) _ (n=1)! " (n—=1)!
k-1 k T o k=1D'(n-k! K(n-k-1)

k n-k
= (Yl—l)| [k|(n_k)|+k'(n—k)']
n
= (n—l)'m
n!
T Km-k!

- ()

where we have used the fact that r! = r(r — 1)! in going from the first to the second line. Isn’t that
slick? We now have two equally good, but utterly different, arguments which lead to the same
identity. Make sure you understand both—that your mind can easily shift gears from the counting
argument to the algebraic argument.

EXAMPLE 15-2 Let’s look at another example of proofs of different types. Consider a group of n
people from which we want to form a k-member committee with m leaders. We can choose k people
to be on a committee in (;) ways, then choose the m committee leaders in (:1) ways. Or, we can
choose the m leaders first in (,',‘,) ways and then choose the remaining k — m committee members

from the n — m remaining people in (’,::z) ways. Since both methods will give us all the committees,

we have the identity )
n n n—-m
(k> (m) - (m) (k - m) (152)

We can prove this identity in a purely algebraic way as well. We just expand all the terms of (15.2)
using the definition of (;"), so that the identity we want to prove is
n! K = n! (n—m)!
K(n-k! m(k=m) — m!(n—m) (k—m)(n—k)!

Since after a little cancellation the two sides have all the same terms in their numerators and
denominators, they must clearly be equal.
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15.3 More Identities

Pascal’s Identity is one of the two most fundamental combinatorial identities. The other we encoun-

tered in Volume 1:
( l) - g
k n—-k 7

EXERCISE 15-4 Develop both a counting and an algebraic argument to prove this identity.

&

From just these two basic identities, we can derive quite a few others. For example, suppose we
apply Pascal’s identity not just once, but many times, writing

n n-1 n-1
() = (F)+G)

n—1 n-2 n-2
(%) () (22)
(nkl>+<2:f>+(::;>+<:_g) (15.3)
and so on. We can continue this way, expanding the last term with Pascal’s identity, until the last
term is (z:f) = ("6") = ("'g‘l), at which point we stop. We have thus proven the identity

n\ _(n-1 n-2 n-3 n—k-1
©)=C) G+ G2 (57 W
EXERCISE 15-5 Try some n and k to test (15.4). Why is the identity obvious if k = n — 1?

EXAMPLE 15-3 Since our identities are getting very long and taking up a lot of space, we can use
the space-saving - notation to write them more easily. Convince yourself that

(=503

Suppose we again apply Pascal’s identity repeatedly as in equations (15.3), but this time to the
term we left alone in that expansion. We thus write

() = ()65
k k k-1
() (60

k k-1 k-1

n-3 n-3 n-2 n—-1
() () G25)+ (o)
and so on; the process will terminate when we have

(:)=(::1)+<kf1>+(:fi)+---+<',::;>. (155)

Applying Pascal’s identity in a slightly different way, we achieve a completely different identity!

is equivalent to (15.4).
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EXERCISE 15-6 Try some values of n and k to verify (15.5). Why is the identity obvious if k =1?

EXAMPLE 154 Evaluates= () +2(}) +3(3) eooen(2).

Solution: We use an old trick from Volume 1: writing the sum backwards yields

S=n(::) +(n-1)("ﬁ1> +(n—2)("'_'2) +ee ('11),

which after applying the identity (:) = ("'jk) to each term in the sum becomes

5=n(8> +(n—l)<’ll) +(n—2)<;) +e 4 ("zl>.

We add this to the original series to get

zsen(g) en(5) en(3)+enl o) +0 )

Using the identity (15.1), we then have 25 = n2",or S = n2"1,

154 Block Walking

In the derivations of the identities (15.4) and (15.5), we have gotten very far from the elegant counting
arguments by which we proved Pascal’s identity. It's a good idea to keep pure counting techniques
in mind, even when algebraic methods (like the repeated application of Pascal’s identity) work fine;
counting arguments often point the way to new results.

On the other hand, counting arguments can get messy. To reduce complication, we’ll introduce
anew tool: Pascal’s triangle. Pascal’s triangle is formed like this:

()
G0
o (J\ )

G O @ G

Pascal’s triangle is interesting for several reasons, but the biggest is that because of Pascal’s
identity, each element is equal to the sum of the elements above and to the right and above and to
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the left. Thus in the diagram above, each element is the sum of the elements above it and with lines
connecting to it. Rather than computing all the (})’s directly, we can use this simple rule to write
out the elements by simple addition.

EXERCISE 15-7 Write out the first four rows of Pascal’s triangle explicitly. Use the rule above to
extend the triangle several more rows.
EXERCISE 15-8 Why is Pascal’s triangle symmetric right-to-left?

EXERCISE 15-9 Find the sum of the elements in the first, second, third, and fourth rows of Pascal'’s
triangle. Is there a pattern? Does it correlate to anything you have seen? Why does this happen?

EXAMPLE 15-5 Combinatorial identities can be thought of as re- x
lationships between elements of Pascal’s triangle. For example,

the identity (15.5) asserts that the sum of the elements denoted <

by o at right equals the element denoted by . (The x’s denote x oo
elements not taking part in the identity.) See if you can draw B & ®%
pictures of other identities you have seen—such mental pictures X o X % X
may be easier to remember than a cumbersome formula. x x e x x X

The importance of Pascal’s triangle in combinatorics is twofold. First, it can be used to look for
and test possible identities, without the grind of multiplying out the (;:)s Second, it can be used to
prove identities through the method known as block walking.

The key to block walking is to imagine taking a walk on Pascal’s Triangle. Starting at (g), we
proceed strictly downward along the lines drawn in the picture of Pascal’s triangle above. At each
junction, we can choose to go left or right; the element (Z) is attained after n downward moves by k
right decisions and n — k left decisions. (Verify this yourself.)

The key question is, in how many ways can we walk to the position (!)? Since we need to choose
k right decisions out of n total decisions, we can do it in ('k') ways!

EXERCISE 15-10 Prove the same thing (that we can walk to (2) in (2) ways) by induction.

So what does it matter how many ways we can walk to (:)7 It allows us to make complicated
counting arguments with the notion of walks as a simplifying crutch. For example, consider the
identity (15.5), which we drew in Example 15-5 above. In terms of block walking, the identity asserts
that the sum of the number of walks to the o’s is equal to the number of walks to the . We can
prove this by observing that at each o, we can branch right only once more if we hope to get to the
e. Thus the o’s can be thought of as all possible positions of the Jast right branching we make. Since
there must be one and only one last right branching, the sum of the numbers of walks to the o’s must
equal the number of walks to the o.

EXERCISE 15-11 Prove the identity (15.4) by a block walking argument.

EXAMPLE 15-6 Prove that )
i (n) N <2n)
2 \k) =\n (15.6)
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Proof: In walking from (g) to (2""), we must pass through the nth row of the triangle, say at (Z)

The number of ways to go from (:) onto (2,:’) is (nf k), since we need to make n — k right branches out

of the n total branches we have left. Thus the total number of ways to get to (2"") passing through
(@) is @) = DG = (2)2 Since we could pass through the nth row at any position k, we then

have .
2n\ _(n 2+ n 2+.__+(n)
n) \0 1 n)’
which is equivalent to what we were trying to prove.

EXERCISE 15-12 Prove Vandermonde’s identity,

£

and show that (15.6) is a special case of this result. (Be careful, since r might be greater than m or n.)

EXAMPLE 15-7 Block walking is not the only way to visualize combinatorial arguments. In
Example 15-2, we used a committee selection model to prove an identity. We could just as well have
used this model to prove (15.7). Notice that the single term (”’;”') is the number of ways to pick an
r-member committee from m + n people. Each term of the sum is the way to pick such an r-member
committee from m + n people provided exactly k of the people are among a specific group of m
people. (We choose k of the these m, and the other r — k from the remaining n, for a total of (',:’) (,fk) J)
Since the number of members of the committee which are from the first m can be anywhere from 0
up to 7, the sum over all such numbers must equal the total number of ways to form the committee.
If r > m or r > n some possible committee choices will be impossible—we can’t take i people from

n

the set of 7 if i > n—but in these cases the corresponding () in the sum will be zero, so such cases

are well accounted for. (If you have trouble following our arguments, try letting m of the people be
female and n be male.)

Obviously there are other models which might be useful in proving combinatorial identities. Try
to devise one which allows you to form a clear mental picture of what’s going on. (One advantage
of block walking is that you can draw a physical picture of what’s happening.)

15.5 The Binomial Theorem

One very special combinatorial identity results when we expand an expression like (x + y)*. The
fourth power means we are multiplying (x + y) together four times, so the expression can also be
written

(x+ Y(x+ y)x+y)(x+y).

Writing it in this form allows us to use the distributive law to find the product. Each term in the
expanded version will have eitheranxora y from each (x + y) in the product; for example, the term
xxxx or ¥* will arise when we take the x every time.
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Since each term will consist of four letters, one from each (x + y), the terms of the resulting sum
can only be x*, Xy, %2, x1%, or y*. Because the sum of the x and y exponents is 4 in each case, we
can write each type of term as x*y*~* for some k between 0 and 4.

Each combination of letters can have a different coefficient, however. For example, to form xy3
we need to take one x and three y’s. This can happen in four ways, since the x can come frf)m any of
the four (x +y)’s: the possible orders are xyyy, yxyy, yyxy, and yyyx. Thus the final sum will contain
the term 4xy>.

In general, for a term x*y*¥, we need to pick k x’s from the four (x + y)’s and take y’s from the

others. By elementary counting, there are (}) ways to choose the x’s, so the term ()" is what
will appear in the final sum. The full expansion will thus be

o= Qe (v (o0 (e

EXERCISE 15-13 To test the validity of this combinatorial approach, we can expand (x + yiina
different way: write (x + y)* = (x + y)*(x + y)?, expand both squares, and multiply. Try it this way,
and see if your answer agrees with the expansion above.

EXERCISE 15-14 Write the expansion above in ) form.

EXERCISE 15-15 Suppose I said: “For a term x*y*~, we need to pick 4 — k y’s and take x's for the
rest. We can do this in (,*,) ways, so the term that should appear in the final sum is (,%,)x*y*=¥, not

(:)xky""‘ as was claimed above.” Is something wrong with my logic, or is the discussion above in
error?

It's clear that we can extend our argument for (x + y)* to any power. We write

(x+y)"=Sx+y)(x+y)(x+y)-~-(x+y2,

n times

so that a term x*y" ¥ is formed by choosing k x’s from the 1 (x + y)’s. This can be done in (}) ways,
so the term in the final sum will be (:) x*y"k. Thus we can write (x+y)" as

(e (L) Qe @

or more concisely as

2

x+y' =3 (n " k> Rk, (15.9)

k=0

This expansion is the Binomial Theorem for the integral power n.
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EXAMPLE 15-8 Evaluate (x + y)°.
Solution: Since (g) = (3) =1, (§) = (§) =5,and (3) = (3) =10, we have

(x+7)° = 25+ 5xty + 103y + 1022y + 5xy* + .

EXERCISE 15-16 Show that the Binomial Theorem gives the correct expansions forn=1,2,and 3.
EXAMPLE 15-9 Find the 12th term of (2r — 5s)'8.

Solution: The first term is (}5)(2r)!®. The second term is (18)(2r)'7(~5s). The third term.is
(18)(2r)'¢(=5s)%. Do you see a pattern? The kth term is (it +l)(2r)18"“'1(—55)"", so the 12th term is

18 -12+ 1 _ (18 70 el
(1s—u+1)<2’)‘“ ey = (7)(2r>< 5.

WARNING: As you can see, the 12th term is not the same as the term with exponent 12 fo.r eithei ‘f
of the variables! Since both “find the kth term. .. ” and “find the term whose exponent of xisk...
questions are common, make sure you know the difference, and how to deal with either one.

EXERCISE 15-17 Prove that the Binomial Theorem can be written
n
(x+y)" = E (:)f'_kf.
k=0
How is this different from equation (15.9)? Does this or equation (15.9) correspond better to the
form (15.8)?
EXERCISE 15-18 Use the Binomial Theorem to
i. expand (x +2y)*.
ii. find the coefficient of x* in (x +2)”.

; 1%?
iii. find the constant term in the expansion of (x2 + ;) .

iv. find the sum of the coefficients in the expansion of (a + b)'°. (MA® 1991)

EXAMPLE 15-10 The Binomial Theorem is a good way to prove certain identities. For example,
we can immediately get back the identity (15.1) by cleverly substituting x = y = 1 in the Binomial

Theorem. We then have

(1+1)n=2"=(n)+(n>+(n)+.'.+<n>l
0 1 2 n
as desired.

EXERCISE 15-19 What do we get when we take x = 1and y = -1 in the Binomial Theorem? Show
that this result can be derived in a simpler way if 7 is odd.
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EXERCISE 15-20 Evaluate the sum
En ok (n)
=0 k

EXAMPLE 15-11 A fairly simple extension of the Binomial Theorem is to expressions like (x +y +
z+w)!% As with the binomial case, each term in the expansion will be of degree 10, since it will
draw one letter each from the ten (x + y + z + w)’s being multiplied together. To find the coefficient
of one such term x*y*z°u?, where a + b + ¢ + d = 10, we need to think of in what ways such a term
can arise. Let’s look at the particular case of x?y°zw*. In the expansion

(x+y+z+w)(x+y+z+w)~--(x+y+z+£),

10 terms

x2y3zw* could be xxyyyzwwww or xyzwwxywyw or any other such expression. The number of such
expressions is the number of ways to rearrange the letters in the “word” xxyyyzwwww. In Volume 1

we showed that this number is i

2131141
so this is the coefficient of the term x?y3zw*.

EXERCISE 15-21 What is the coefficient of x*yz3w? in the same expansion as above?

EXERCISE 15-22 Find the coefficient of abc? in the expansion of (a + b + ¢ + d)*.

§\ EXERCISE 15-23 Write down the expansion of (x + ¥ + z)" in 3_ notation. (You'll need more than
oneY..)

Problems to Solve for Chapter 15

Note: many of these problems are good exercises in the use of 3 notation. Try to use them to become
more comfortable with this very versatile notation.

i 100 100 100 100
235. Fmdthesum( 1 )+2< 2 >+3( 3 )+ +100<100>.(MA9 1991)

236. Evaluate Z (:) (Z) for fixed m and n.
k=0

237. Evaluate

LiYjs
Eed

I -
2T N
.
N——

(MA® 1992)

238. In the expansion of (xy — 2y~>)!6, find the coefficient of the term that does not contain y. (MA®
1991)
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=~ (k
239. Show that ) <r> = (': : 11) - (r'+"1)' for integers r <m < n.

k=m
240. Evaluate $4(7) +43(T) +42(¥) +--- +0(5) = (£). (Mao 1992)
241. (Mandelbrot #1)

i. Given a row of 1 + k + 1 blocks, show that there are (:,'f’l‘) groups of n blocks which include
the first block.

ii. Show that there are ("*f:ll"") groups of n blocks which include the mth block (with the first

block being on the far left) but no blocks to the left of the mth block.
iii. Use these to prove that

(n—l)+ AW n+1 n+k\ [(n+k+1
0 1 g )V Fheen) TN wL
242. Find the sum of the coefficients of (a + b + ¢ + d)1°.

m n -
243, Prove that 3 (n +,f 1) -3 (m +k 1>‘
=1 k k

k=1

244. Find the sum of the last three digits of 19%2. (MA® 1992)

n-1
245. Prove that 3 (-1)* ( " ) =1
= k+1
n n n .
246. Evaluate (1>+3(3)+5(5)+---mdosedform. ‘§=\
. (n n
247. Evaluate ) | ( ) ( )
e \k/ \k=1
2n+k) (2n—k)_

248. For fixed n, maximize the quantity ( = 3

prove a3 (1) (173 =27 form <. s
250. Find the sum
(@)(0)+G) )+ E)E) ) )

Chapter 16 Sequences and Series page 180
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Chapter 16

Sequences and Series

16.1 Fractions in Other Bases

In Volume 1 we examined how to express integers in other bases, but what about fractions? The
places after the decimal point in a base ten number represent 1/10, 1/100, 1/1000, etc., so the places

after the decimal point in base k represent 1/k, 1/k?, 1/k°, etc. For example, to find 0.1123 as a base
10 fraction, we simply add 1(1/3) + 1(1/9) + 2(1/27) = 14/27.

EXAMPLE 16-1 Find 0.3245 as a base 10 fraction.

Solution: In Volume 1 we evaluated repeating decimals by multiplying by the appropriate
power of 10 and subtracting. Since we are using base 5, we multiply by a power of 5 instead. Since

the repeating group is of length 3, we use 5, so

0.324324324. ..
324.324324324 . ...

x
125x

Subtracting the first from the second (and remembering that the expressions on the right are in base
5, we have 124x = 3245 = 89,s0x = 89/124.

Getting to base 10 from some other base is pretty easy, but writing a given fraction as a decimal
in some other base isn’t always so simple.

Let’s try writing 1/2 in base 3. Since 1/2 is more than 1/3 but less than 2(1/3), the first decimal
place is 1. This leaves 1/2 - 1/3 = 1/6 for the remainder. Again 2(1/9) > 1/6 > 1/9, so the next
decimal place is 1 also, leaving 1/6 — 1/9 = 1/18 for the rest. Continuing in this manner, we keep
getting ones seemingly forever. This leads us to suspect that 1/2 = 0.13. Using our above method to
evaluate 0.13, we find that it indeed equals 1/2.

This example gives us a general method for writing a fraction in base k. Evaluate each of the
successive decimal places until the decimal either terminates or a pattern emerges. If we find a
pattern, we must then show that our suspected decimal does in fact equal the desired fraction.

< 180 »
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EXAMPLE 16-2 Find 5/6 as a base 5 decimal.

Solution: The first decimal place is 4, leaving 5/6 — 4(1/5) = 1/30. Since 1/30 < (1/5)?, the
next decimal place is 0. Since 1/30 > 4(1/5)3, the next place is 4, leaving 1/750 for the rest. Thus, the
following decimal is 0 (since 1/750 < 1/625), and we begin to see the pattern 0.404040.... We can
quickly verify that 0.405 = 5/6.

16.2 Yome YIpecial Yeries

When faced with a sum, we would usually be much happier with a closed form, a simple formula
without dots or 3°’s. For example, given1+2+3+---+n, we can easily use the formula for the sum
of an arithmetic series to get

_nn+1) 6.1
= (16.1)

This simple form provides an instant answer if someone asks you to find 1+ 2 + -+~ + 1001. Rather
than do the thousand-term summation, you just plug 1001 in for n to get (1001)(1002)/2. That's the
beauty of a closed form.

1+2+3+---+n=§(n+1)

EXERCISE 16-1 Write down the closed forms for2+4+6+---+2nand 1+3+5+---+ (2n—1).

Having gotten those three out of the way, let’s consider something meatier:
n
S)=1+4+9+-+n*=) i
i=1

None of the techniques we used in Volume 1 seem to work very well here. A different method
will do it, and give some practice in using ¥ notation at the same time. We need to use the basic

combinatorial identity
k k+1 k+2 n\ _(n+1
3+ (F)+ (5 (0)- ()
derived on page 172.
How does the combinatorial sum relate? If we write

,'2=i2+i—i=i(i-1)+i=2<'>+i,

the connection becomes more clear. We then have
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These sums may be simplified using the combinatorial identity above to get

n
2 n+1 n+1
Zl 2( 3 ) + ( 2
i=1
n(n+1)(2n +1)
—
Can you follow the transition from the next-to-last to the last step?

We can, in principle at least, extend this type of argument to find 3" for any integer r. All we
need is to find an expression for i" as a,(’) +a,-1(,%,) + -+~ +a1(j). (In the proof above for r = 2,
we had @; = 2 and a; = 1, though we concealed the structure somewhat by using just i instead of

( ) .) We can always do this, by expanding the combinatorial terms and equating coefficients in the
polynomial which results, if we put in enough time and effort.

EXAMPLE 16-3 One case for which it is worthwhile to put in the effort is for r = 3. We need to find

ay, az, and aj3 so that
T s e A
PR\ TR ) Ta\q )

P = ‘—’i(i)(i ~1)i=2)+ ‘E(i)(i w Ty
We could expand the products and equate coefficients of %, i, and i, but there’s a slicker way to find

ay, a2, and a3. Since the above relation must hold for all positive i, we choose i = 1, so 13=0+0+ay,

ora; = 1. Similarly, i = 2 gives 8 = 0 + a2 + 241, so a; = 6. Finally i = 3 gives 27 = a3 + 3a, + 3ay, or
az = 6. Thus,

$2=e5 () o5 () 2 () =o(1) () ()

EXERCISE 16-2 Simplify the expression above to show
n

2 13 <n + 1>
i=1

16.3 The Fibonacci Numbers

Expanding, this is

&

The sequences we have seen up to now have all had their nth term defined as a function of .
However, some sequences are not so simple. For these, the nth term can only be defined in terms

of the previous terms. Such a sequence is called recursive. We have actually already seen some
recursions. For example, the definition of an arithmetic sequence by

X = 4

Xp-1 +d, n>1;

Xn
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is a recursive definition. In this case, however, we can also find the closed form x, = a + (n — 1)d.
A closed form cannot contain other terms of the sequence or summation symbols; unfortunately, in
many cases one either does not exist, or is terribly complicated. In such circumstances we have to
stick to recursion.

By far the most important recursion is the Fibonacci numbers. The definition is extremely simple:
each term is the sum of the previous two. We start with the first two terms 0, 1. The sequence then
goes

0:1; 1,:2,3,:5,.8, 13;5%:

EXERCISE 16-3 Write down the next few terms of the sequence.

Let’s make the definition of the Fibonacci numbers more precise. The Fibonacci numbers are a
sequence F, k=0,1,2,..., such that Fy =0, F; = 1, and for k > 1, Fy = Fx_1 + F-2.

The Fibonacci numbers have tons of interesting properties. For example, consider the limit as
k — oo of the ratio Fy/Fy_;. We write

o Fe . Fra+Fra . Frop _ 1
¢ = kl_u'gg_—l = ’}_1{2 TR 1 +le:2 T 1+ & (16.2)

where the last step is the only tricky one. Since k is going to infinity, if the limit ¢ exists at all, it is
the same for k as for k — 1. Thus, in the limit, the ratio Fy_,/F;_; equals the ratio Fx_;/Fy, or 1/¢. This
may seem fishy, but it is entirely rigorous, IF THE LIMIT ¢ EXISTS. We assume here that it does, y
because the Fibonaccis seem fairly well-behaved; to prove that fact is more complicated. Thus be J
warned that there is a missing proof to make all this rigorous. ‘/

With that warning in mind, we can go on to do what equation (16.2) begs us to do: solve for ¢.
Multiplying by ¢ (assuming ¢ to be nonzero) and rearranging, the equation ¢ = 1 + 1/¢ becomes
$? — ¢ — 1 = 0. By the quadratic formula, we get

¢=1+2\/5..

This is the “golden ratio,” called this because it has certain interesting properties and because the
Greeks felt the most aesthetically pleasing rectangles had the ratio of sides 1 : ¢. (You can even
today find many rectangular objects which have been made in the golden ratio.)

EXERCISE 164 The quadratic equation for ¢, ¢* — ¢ — 1 = 0, has two roots. Why did we choose
the one we did as the desired value?

There are many other interesting facts about the Fibonacci numbers. For example, it is relatively
simple to prove that i

Fu41Fp1 = F,, - (—1)". (16.3)

You can easily verify that this works for small n; we'll prove it by induction. For the base case, we

have FoF, = 2 = 12+ 1 = F} — (-1)". To do the inductive step we assume the relation holds for n — 1,

so that
FoFp2 =F5 - (-1)"7,
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or
F2_y = EqFpez = ()" = =(-1)", *)

We wish to use this to show that the relation holds for n. We have

(Fn + Pn—l)(Fn = Fn—Z)
F2 + Fy_1(Fn — Fu-2) — FnFn-2.

Fn+an—l

Since F, — Fp—2 = F,_1, by (+) we have
Fpi1Fno1 = F2 + F2_; = FyFn2 = F2 = (-1)",

as desired.

EXERCISE 16-5 Prove the following Fibonacci identities.
i. Fp=Fpp+Fp3+---+Fy+1
ii. F3+F2+ - +F2=FyFpn
ili. Fo+Fa+F4+-+-+ Foy = Fop1

Perhaps the most interesting Fibonacci identity of all is that F, can be written as a sum of (:) 's:

Fny1 = (g) + ("Il) + (n;Z) 4o (16.4)

We can prove this is an especially simple way. First observe that (16.4) holds forn = 0and n = 1; we
getF1 = (8) =land F, = ((1)) = 1. Then we show that the sum on the right side of (16.4) satisfies the

Fibonaccirelati[(z;(;l) + <n;2> + <n;3) . [('5) . (nIl) . (n;Z) +]

-(6)+ ()« ()07 ()
-5+ )+ (59

We have used Pascal’s identity to get from the second to the third line. Since Pascal’s identity
(Z) = (2:%) + (";1) holds for any n and k, even if k > n, we don’t have to worry about where the sums
end.

Because the combinatorial sum in (16.4) satisfies the Fibonacci relation and matches F,,; forn = 0
and 1, it must be identical to Fy4; for all n.

16.4 Dealing with Recurrences

A general recurrence relation tends to be a fairly complicated beast, but a knowledge of how they
work often makes it possible to derive facts about them.
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A common problem is to take a recurrence relation, like xx = xx-1 + Xk-2, and find a closed form
expression for the nth term. If we could do this, we could find the nth term by plugging n directly
into some formula, rather than first having to compute the first n — 1 terms using the recurrence
formula.

However, this simple-seeming request leads to difficult problems. To see this, let’s try to find a
closed form for F,,, the nth Fibonacci number. One method is to make the guess that the Fibonacci

sequence {Fy} can be written as the sum of two geometric sequences {ar"} and {bs"}, so that F, =
ar" + bs" for all n. The sum must satisfy the Fibonacci relation Fx_1 + Fx = Fx4+1, o we have

a1 4 bkl 4 ark 4 bsk = ark*! + bt (16.5)

You might be able to solve this with some effort, but a simpler way exists. We can rewrite (16.5)
as

ar"! + ar* — ar"*! = —ps"! — bs" + bs"*L,
or
ar (1 +7 =) = —bs" (1 +5 - 52). (16.6)
Since r # s by the assumption that we have different geometric series, the only way the two sides
of (16.6) canbe equal forallnisif 1+r—r2 =1+s5—s*=0.

EXERCISE 16-6 Why can’t the two sides of (16.6) be equal for all n unless they are both equal to 0?

We have thus shown that both r and s satisfy the quadratic equation x? — x — 1 = 0. Solving this
equation by the quadratic formula, we thus find

1+45 1-45
7= 2 and Si= >

EXERCISE 16-7 Check by hand that r and s above satisfy x> —x - 1 = 0.

Our choices of r and s force the summed sequence {ar" + bs"} to satisfy the Fibonacci relation, no
matter what a and b are. We can thus construct lots of sequences which satisfy the relation just by
choosing different @ and b.

EXERCISE 16-8 Suppose we take a = b = 1. Write down the terms of {ar" + bs") forn = 0, 1, 2, and
3 and show that they do satisfy the Fibonacci relation.

EXAMPLE 16-4 What are a and b for the Fibonacci series? We set
ar’ +bs"=a+b=Fy=0

arl+bsl=a(1+2\/§) +b(1_2‘/§> =F =1

and solve the resulting system of equations. Using the first equation to write b = —a, the second
equation gives
-+ -—
a (12_‘/§> +(~a) (%—5_) =1,

which yields a = 1/ V5. Substituting this into the first equation yields b = -1/ V5.

and
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Using Example 16-4, we can now write down the general closed form for the Fibonacci sequence

“ () () (=
(5951

This is called Binet’s formula for the Fibonacci sequence.

Fu = ar" +bs"

EXERCISE 16-9 Show that Binet's formula gives the correct values for Fo, F1, F2, and F3. (Youshould
have already calculated r2, °, s%, and s° for Exercise 16-8.)

EXERCISE 16-10 Consider a sequence (G} with Gys; = G +2Gk-1 fork = 1, with Go =0and Gy = 1.
Find the general term G, in closed form.

EXERCISE 16-11 What changes would we have to make to our scheme to handle a three-term
recursion relation like X1 = aXj + pXk-1 + yXi-2?

m

16.5 Dealing with Sums

We are often asked to add up a series (especially an infinite one), with no other information to go on
¥ To do this for arbitrary series can require complicated maneuvering, as for the derivation of Shai?
‘{ The vast majority of sums are too hard to do at all! Many are on the border: someone has done them
but only with a lot (perhaps years) of work. A classic example of this kind is the simple-seeming
sum 5oy % 7, for which the answer is the unfathomable % ? The moral: don’t spend too long with a
sum unless you have good reason to believe it is doable.

As an example of a common method, consider the series

-~ 3 1 .3 1 ek
gl:i(i+1)_l-2 2.3" 3.4 n-(n+1)

This is the simplest example of a telescoping series, so called because the series can be made to
fold up like a telescope, leaving only a couple of terms behind. The key is the partial fraction
decomposition
1 1 1
nn+l) n n+1
Verify that this equality is valid. Once you accept that, we can write the series as

(- G- G-D e (D) Gpte)

If we now cancel all the terms which come in both as + and —, we are left with only

1 n

n+l n+1

-]
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Expanding the terms a bit has allowed us to roll the entire series up into two terms.

The method of partial fractions is a crucial one in analyzing series. Here we'll discuss how to do
this for expressions of the form (ax + b)/[(x — ¢)(x —d)], since these are the most commonly occurring
expressions in sums requiring partial fractions.

Find the partial fraction decomposition of

2x -1
x2—-4x+3°

The first step is factoring the denominator as (x — 3)(x — 1). We can then express the given fraction

as a sum of terms whose numerators are constants and denominators are the factors x — 1 and x -3,
or
2x-1 A " B
(x-1x-3) x-1 x-3

We only need these two terms because rational expressions which sum to (2x — 1)/[(x — 1)(x — 3)]
must have common denominator (x — 1)(x — 3); hence the denominator of each term in the sum must
be a factor of (x — 1)(x — 3).

We now find A and B by multiplying the above equation by (x — 1)(x — 3) to get 2x =1 =
A(x —3) + B(x — 1). Letting x = 1, we find 1 = —2A, or A = —1/2. Letting x = 3, we find 5 = 2B, or
B =5/2. Thus we have

2-1__-12 512
x-1)x-3) x-1 x-3

We can extend our process to any rational expression f(x)/g(x), where f and g are polynomials
with rational coefficients such that deg f < deg g by first factoring g(x) into unfactorable linear and
quadratic expressions with rational coefficients. We then equate f(x)/g(x) to a sum of terms, where
the terms are determined by the factors of g(x).

For each linear factor x — ¢ of g(x), we have a term of the form 4;/(x - ¢); for each quadratic
factor there is a term of the form (ax + a)/(x* + cx + d). The only subtlety comes in the case of
repeated factors. If the factor h(x) occurs n times, then we will have the n terms a; /h(x), a2/ (h(x))?,
a3/(h(x))3,.. ., an/(h(n)). Once we've found all our terms, we then find all our unknown 4;’s as we
did above; multiply both sides of f(x)/g(x) = (sum of terms) by g(x) and cleverly choose x’s.

Many complicated sums can be analyzed with suitably involved partial fraction decompositions
and telescoping. Even products can telescope, as the first example shows.

EXERCISE 16-12 Find . (MA® 1992)
n=1

n
—~ (n+1)(n+2)

13
EXAMPLE 16-5 Evaluate ]|
n=1

n(n+2)
(n+4)%"

Solution: Let’s expand the ] notation to get

ME) Q@) B)E)  (13)15)
GG ©)6) )7 177y

(Mandelbrot #2)
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What cancels? In the numerator of the product there are one 1, one 2, two 3's, two 4s, two 5's, two
each of 6 through 13, one 14, and one 15. In the denominator there are two each of 5 through 17.
Thus everything cancels except for

1-2-3-3-4-4 3 _ 3 .
14-15-16-16-17-17 ~ 7-5-16-17-17 161840

EXAMPLE 16-6 Telescoping isn't the only general method for evaluating sums. In fact, the solution
to this one looks quite a bit like our standard methods from Volume 1:

Find ) 3%:1. (MA® 1990)
n=1

Solution: We call the sum S, so that

S—g+i+£+i+...
T 927 81 243
We then divide S by 3, to get
2 4 6
S/3—ﬁ+ﬁ+i4—3

The clever part is to subtract the series for S/3 from that for S, to get a pure geometric series:

2. 2.2, 2 ...
9" 27" 81" 243
2/9

1-(1/3)

1

§I

S-5/3=25/3

so S =3(1/3)/2=1/2.
“5'\ EXERCISE 16-13 Do the previous example in another way, by writing

o0
2,
n=1

and evaluating the second summation first. (Make sure you see the clever way in which the double
sum is equal to the single sum!)

2n

o
Z nl
3
n=1

Ms

Wi

1
3

3
1}

n

16.6 The Binomial Theorem Revisited

5\ Recall the Binomial Theorem, which allows us to expand any positive integral power of a binomial

expression like (x + y):
n_ (" 0, (M\n-110, ..., ("\.,0,n
wrar= (et (g ns (o

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

the ART of PROBLEM SOLVING: Volume 2 < 189

Of course, this gives no information about expansions like (x + y)"/2, or (x + y)™. After all, what is
(82 )
3)t\7 . .

It turns out, however, that there is an extension of the Binomial Theorem to cover just such weird
cases. The key to writing down the new theorem is to define quantities (¥) where n is nota positive
integer. To make this new definition correspond well to the old definition, we write the old definition
in a new way:

n\ _ n! _n(n—l)(n—2)---(n—k+l)
k)  Kmn-k! k!
Since there is no satisfactory definition of the factorial n! if n is not a positive integer, the first
definition n!/k!(n — k)! won’t do us any good. But suppose we try to blindly use the alternate way of
writing (}) for n = 1/2, k = 3. We get

(1/2)(1/2-1)1/2-2) _ (1/2)(-1/2)(-3/2) _ 1

3! B 6 16’

which is a perfectly reasonable result! This second way of writing (Z) allows us to define it for any

n.
WARNING: Although 7 can be any real number in the new expression for (:), k must still be ‘/
a nonnegative integer, since we have a k! in the definition. Also, note that (3) =1 forall n. As

a final warning, if n is not a positive integer we must abandon any hope of connecting (;’) to real
combinatorial actions like picking k things from a set of 7.

EXAMPLE 16-7 Evaluate (7}%).

Solution: We have
7/3\ _ (7/3)(7/3=1)(7/3-2)(7/3-3) _ (7/3)4/3)(1/3)(-2/3) _ _ 7
( 4 )" 4! B 24 T 243"

EXERCISE 16-14 Evaluate () and (77/°).

EXERCISE 16-15 Use our new definition to look at (:), where n is a positive integer and k > n.

EXERCISE 16-16 Simplify (3,)-
EXAMPLE 16-8 Show that if n and r are positive integers, then

(r)=e ()

Proof: We simply write out (7) as
-n\ _ [+ D= +2)]--[-(n+r-1)]
r - rir-1)(r-2)---1
-1)(n)n+1)(n+2)---(n+r-1)
!
-1)'(n+r-1) '
(n=1)!r!

A6 e |
o ("7,

\I/
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and we're done!

Using our new definition of (:), we now can write the statement of the expanded Binomial
Theorem: for any real number n,

(x+y)" = (g)x"yo + (’;)x"‘lyl + (;) R

This looks suspiciously like the original Binomial Theorem! The only difference is that instead of
showing the expanded series as terminating at some point, it keeps on going. This is because, if n is
not a positive integer, the terms

n n(n-1) nn-1)(n-2)
1 2 7 6 ""

will never hit zero.

If n is a positive integer, then at some point the fractions will have an (n — n) term on top, and
will thus all be zero. Thus for positive integers 1, we get back the familiar, terminating version.

EXAMPLE 16-9 Calculate 1.271/3 to a few decimal places.

Solution: From the general Binomial Theorem we have

a+277 = ("E/3>(1-1/3)(.2)°+ (‘11/3)(14/3)(,2)1+...

(1)(1)(1) + (=1/3)(1)(:2) + (2/9)(1)(.04) + - --
1-.0666 + .0088 — - - -
~ 0.9422.

While not exactly right, this approximation is pretty close to the actual value.

EXERCISE 16-17 Estimate 1/(2.12)? using the general Binomial Theorem.

As with any infinite series, we have to consider convergence carefully when using the general
Binomial Theorem. That is, does our sum add up to a finite result or does it just get bigger and
bigger as more terms are added on? Remember that the terms of a series must tend to 0 if it is to
converge, although just because the terms tend to 0, the series doesn’t have to converge. Way out in
the series created by the Binomial Theorem, the term looks like

n x'-large # ylaxge #I
large #

n o ylarge #
large # xlarge # | ©

or
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Since x" is fixed, and (,aré'e #) tends to a finite limit as the large number gets big (we won’t prove this

here, as it’s off the track a good bit), the important term is the last term. This term will tend to 0 if g

x| > lyl, but won't if x| < |y|. Thus, in order for the series to converge, we must have [x| > |y].
WARNING: Although [x| > |y| forces the terms of the series to tend to 0, this does not in itself

assure that the series converges. (Always keep in mind the series 1+ % - % +---, which diverges e\_/en

though its terms tend to 0.) The binomial series does converge as long as |x| > |y|, but this requires

proof (which we won’t get into here).

EXAMPLE 16-10 The Binomial Theorem allows us to make quick estimates of many square roots,
fractions, etc. For example, consider ;,l—c, where € is small compared to n. (This Greek letter,
pronounced EP-si-lon, is often called upon for the low-status job of representing a small number.)

By the Binomial Theorem we have

LI o Y =1y =1\ 89 ...
e =(n+e) —<0> 1€0+<1)n2€1+<2)n e +

Since the terms in the series expansion get smaller and smaller, using more and more terms will give
a better and better approximation to the true value of -1-. Taking only the first two terms yields the
so-called first-order approximation

-1, ..~1 2 _nh-—¢€
n+e)" ~n —en "= o

The order of the approximation is the highest power of € which appears, which is why this one is
called first order.

EXERCISE 16-18 Find the exact value of 1/101 using a calculator, then compare to the first order
approximation, which you can do by hand. (Hint: use A = 100 and € = 1.) Was the extra precision
worth digging out the calculator?

EXERCISE 16-19 Guess what a second order approximation to (1 + €)~! would be. How about
“zero-th” order?

EXERCISE 16-20 Find a first order approximation to VA2 + € and use it to calculate V17 without a
calculator.

16.7 Harmonic Sequences

In Volume 1 we discussed arithmetic and geometric sequences. In particular, these sequences have
the property that any element a, is the arithmetic or geometric mean of the two adjacent terms a,_,
and a,,;. (Make sure you see why this is so.)

But the arithmetic and geometric means aren’t the only types of means. In particular, suppose
we construct a harmonic sequence, where every term is the harmonic mean of its neighbors:

2
A
An-1 e
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If we invert both sides of this equation, we have

1 1
An-1 = An41

2 ’

S

so that 1/a,, is the arithmetic mean of 1/a,-1 and 1/a,41! Thus a harmonic sequence can be formed
by taking the reciprocals of the terms of an arithmetic sequence.

EXAMPLE 16-11 Since1,3,5, ...is an arithmetic sequence, 1, 1, 1, ... is a harmonic sequence.

57
EXERCISE 16-21 Which are harmonic sequences?
1228 1o

Problems to Solve for Chapter 16

251. If the sum of the first 3n positive integers is 150 more than the sum of the first n positive integers,
then find the sum of the first 4n positive integers. (AHSME 1970)

252. In the harmonic sequence 6, 3, 2, %, g, ..., what will the eighth term be? (MA® 1990)

10
253. Evaluate Y k% + k + 1. (MA® 1991)
k=1

254. Express in simplest form:
L 1 1 1 1 1
(1+2) (1+3) (1+3) (1+5) (1+5) (1+5).

255. Givenag = 1, a1 = 3, and the general relation 3 — a,-12,41 = (~1)" forn > 1, find a3. (AHSME 1958)

(MATHCOUNTS 1988)

256. What is the sum of all proper fractions with a denominator less than or equal to 30? (MATHCOUNTS
1988)

1 1

1 1
2. A —_— —_— —_— ) —
57. Evaluate 2. + .6 + 6.8 ofeuoinih 18.20° (MATHCOUNTS 1989)

258. Evaluate the infinite product
21/341/981/27161/31 L

(Mandelbrot #1)

259. If ap41 = 2an — 3an-1, where a; = 2 and a; = -1, then find as. (MA®© 1901)
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260. Compute the sum

1 1 1 il
V2V VB+vz  Vi+va VB

261. For a finite sequence A = (a,a,,...,a,) of numbers, the Cesaro sum of A is defined to be

S1+S+---+5,
n ’
where Sy = a1 +az + - -+ + a;. If the Cesaro sum of the 99-term sequence (a1, 4z, . - ., 499) is 1000, what
is the Cesaro sum of the 100-term sequence (1,41,4y,...,499)? (AHSME 1992)

262. Given that v; = 2, v; =4 and v, = 3v, — Un-1, prove that v, = 2F2,-2, where the terms F, are
the Fibonacci numbers.

= R
263. Evaluate E % (Mandelbrot #2)
k=1

oo
264. Find the sum Z

n=3

4
m - (MA® 1990)

265. Intermsof p= ) —andq =Y —, evaluate —— . (Mandelbrot #3
k=1k2 k2=;k3 leg(]*'k)a (Mandelbrot #3)

. . 1
266. Simplify the product (1 - —) (1 - 1) (1 - l) (1 - l) (AHSME 1959)
3 4 5 n
267. If n is a multiple of 4, evaluate the sum 1+ 2i + 31 + --- + (n + 1)i". (AHSME 1964)

268. Given f(0) = 3, f(1) = -1, and f(n) = f(n - 2) - f(n—1), find £(100) in terms of the Fibonacci
numbers (Fy, Fy,..., Fi01), where F, = F,_1 + F,—3 and Fo=0and F; =1. (MAB 1992)

.269. Consider the following triangle of integers, where each number below the apex of the triangle
is the sum of the three numbers which are above it to the left, directly above it, and above it to the

right. (Empty spaces count as zeroes.) Show that from the third row on, each row contains at least
one even number. (USAMTS 1)

-
B =
5w~
oON
DNW ==
N
o wr
B

—

270. Prove the identity

12) 2(3) 3(4) n(n+1)
T+T+—2—+---+T=1(n)+2(n—1)+...+(n_1)(2)+n(1)

where 7 is any positive integer. (M&IQ 1991)
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271. Define two sequences of rational numbers as follows: let ag = 2 and by = 3, and recursively

definea, = ',—’,1213} and b, = :jfxl Find bg, leaving your answer in the exponential form m”" /PA. (Mandelbrot
#2)

272. Find the coefficient of the fourth term of (1 — 2x)'/3. (MA® 1991)

273. For asequence uy, Uy, . ., define Al(u,) = tn41—uy and, for allintegersk > 1, K (un) = A (A (up)).
If u, = n® + n, then find the smallest k such that &(u,) = 0 for all n. (AHSME 1976)

274. If Ry = 1(a" + b"), wherea =3+2V2,b=3-2V2,and n = 0, 1, 2,..., then find the units digit
of Ri2345. (AHSME 1990)

y

275. If the sequence {a,) is recursively defined by a; = 2, and @41 = @, + 2n for n > 1 then find a;q0.
(AHSME 1984)

276. Let a sequence {u,} be defined by u; = 5 and the relation 141 —un =3 + 4n-1),n=1,23,...

If u, is expressed as a polynomial in 7, what is the algebraic sum of its coefficients? (AHSME 1969)

sin(nx)
37!

oo
277. Find ) | if sinx = 1/3 and 0 < x < 7/2. (MA® 1992)

n=0
278. Leta; <ap <a3 <--- <ay < --- be positive integers such that ay, =a, + nforn =1,2,3,...Itis
known that if a, is a prime number, then n is a prime number. Find, with proof, a1g93. (Bulgaria 1993)

279. Let n be a positive integer and let @, denote the number of positive integers which can be formed
whose digits are chosen from 1,3,4 and the sum of whose digits are equal to n. Prove that ay, is a
perfect square for every . (Bulgaria 1993)

[ 7177

280. A collection of 21 letters contains 2 each of n different letters. The collection is partitioned into
n pairs, each pair containing 2 letters which may be the same or different. Denote the number of
distinct partitions by u,. (Partitions differing in the order of the pairs in the partition or in the order of
the two letters in the pairs are not considered distinct.) Prove that u,,1 = (11 + 1)up, — (n(n = 1)/2)up—>.
(IMO 1985)

281. A sequence of numbers aj, a2, 43, ... satisfiesa; = 1/2 and a +az + - - - +a, = na, for n > 1. Find
ay, in terms of n. (Canada 1975)
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——the BIG PICTURE

Mathematics is often seen as a rigid, step-by-step discipline. But the creation of mathematics
usually proceeds in a haphazard, seat-of-the-pants manner. Consider this derivation by Eu-
ler. Prominent mathematicians of the 1700’s, including Gottfried Wilhelm Leibniz and James
Bernoulli, had tried and failed to evaluate the infinite series

1 1 1
1—2 + 2—2 + ﬁ + i
but Euler finally did it. He used an expression which will be familiar to students of calculus,
B8P
smx—x—5!~+§—---

The zeroes of sin x are 0, +7, +271, etc., so Euler made the leap of claiming that the polynomial
on the right hand side can be factored as

gm0 (102) 0-3) o)

since both sides are 0 at the same places. Dividing both sides by x and simplifying the right

Side' egEt
— | e |__ cen
|__!+_!_... |__

The constant terms of both sides agree, both being 1, so this crazy procedure might be valid.
Setting the x? coefficients equal, we have

And that's it! Later, of course, the proof had to be tightened up and made rigorous, but as it
stands the derivation is a testament to the power of unfettered creativity in mathematics.

Chapter 17 Counting in the Twilight Zone page
196
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Chapter 17

Counting in the Twilight Zone

In Volume 1 we examined a great many counting methods, but all were based on the rock of common
sense. In this chapter we will look at counting methods which go far beyond common sense, and
thus allow the counting of far more interesting things.

17.1 One to One

We will escape the realm of common sense with the help of the obvious-seeming proposition that if
a one to one correspondence can be drawn between the members of two groups, the two groups are
equal in size. Recall that one to one (also written 1-1 or 1 : 1) means that each object in either group
corresponds to one and only one object in the other.

EXAMPLE 17-1 Prove that the number of integers greater than 0 and less than 100 equals the
number of integers greater than 100 and less than 200.

Proof: For any integer 7 in the first group (so 0 < n < 100) the corresponding integer in the
second group will be 7 + 100. Clearly 100 < n + 100 < 200. It is clear that every integer n in the first
group has a single counterpart  + 100 in the second, and that every integer m in the second group
has a single counterpart m — 100 in the first group. Thus the correspondence is one to one, and the
two groups of numbers are the same size.

17.2 Clever Correspondences

Like any obvious statement, the one to one correspondence principle is useless taken by itself. It
must be coupled with a clever correspondence if it is to have any power.

A common example is of the form:

A dog trainer wants to buy 8 dogs all of which are either cocker spaniels, Irish setters, or
Russian wolfhounds. In how many ways can she make the choice?

< 196 »
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The problem is an example of making selections with repetition, because we can choose as many
as we wish from each category. At face value it doesn’t seem any harder than many problems we
tackled in Volume 1. However, if you try it you'll see it’s much harder.

EXERCISE 17-1 Think about the problem until you see why it can’t easily be done with our previous
methods.

Our problem can be solved with a neat one to one correspondence. Namely, for each choice of 8
dogs we can write a sequence like
ddd_dd_ddd.

The number of d’s before the first __ represents the number of spaniels, the number in the middle
the number of setters, and the number after the second __ the number of wolfhounds.

EXAMPLE 17-2 To what choice of dog varieties does the sequence above correspond?

Solution: Since there are three d’s before the first _, we have three spaniels. Since there are
two d’s in the middle, there are two setters. Since there are three d’s at the end, there are three
wolfhounds. (Note that this is in fact a legal sequence since exactly eight dogs are accounted for.)

EXERCISE 17-2 Prove that we can write exactly one sequence for each choice of dogs, and that each
sequence corresponds to exactly one choice of dogs. What happens in the case that there are zero

dogs of some variety? Is this OK?

Since we have established in Exercise 17-2 a one to one correspondence between choices of dogs
and sequences, all we have to count is the number of sequences. But counting the sequences is easy,
since each sequence is just a matter of choosing two positions for the __’s out of 10 total positions.
(There are 10 positions because we have 8 d’s and 2 __'s.) The number of ways to choose 2 positions

out of 10 is (120) =45,

EXERCISE 17-3 Find (and prove) a simple formula for the number of ways to buy n dogs if there
are r varieties to choose from.

EXERCISE 17-4 Prove that the number you found in the previous exercise is equal to the number
of solutions in nonnegative integers ofx; +x2+ - +x, =n.

There are many other ways to set up one to one correspondences; in general, when a problem
looks too difficult by other methods, look for a correspondence to a simpler problem. It will in
general require some creativity on your part to come up with the particular correspondences which

do the job, but you'll get a feel for what works with experience.

EXAMPLE 17-3 In how many ways may five people be seated in a row of twenty chairs given that
no two people may sit next to one another?

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

198 » CHAPTER 17. COUNTING IN THE TWILIGHT ZONE

Solution: Consider some arrangement of the five people as specified, then take one cha.ir out frqm
between each pair of people. What you're left with is a unique arrangement of 5 people' inl16 cha.lrs
without restrictions. Similarly, starting with an unrestricted arrangement of 5 peoPle in 16 chaxr.s,
adding a chair between each pair of people gives a unique arrangement of 5 non-adjacent people in
20 chairs. (Convince yourself of these two assertions.) Thus there is a one to one correspondence
between the restricted 20-chair arrangements of the problem and unrestricted 16-chair arrangements.
The number of unrestricted 16-chair arrangements is the number of ways to choose 5 chairs out of
16, or (9).

EXAMPLE 17-4 How many nonnegative integer solutions are there to x; + X2 + X3 < 507

Solution: We have seen how to solve x; + x2 + +++ + x, = n, but the inequality complicates
the problem. We might be tempted to successively solve x; + x2 +x3 = 50, then xj +x2 +x3 = 49, a.md
so on, then try to simplify the sum of the results. But creative thinking yields a different way: ]u§t
put as much of the 50 as is desired into x; + x + x3, and put the rest into a new variable y. With this
idea, it becomes clear that a one to one correspondence exists between nonnegative solutions of our
inequality and nonnegative solutions of the equality x; + x + x3 + y = 50, which by Exercises 17-3
and 17-4 has (533) solutions.

17.3 Easyas...

In the first volume we used sets and Venn diagrams to attack problems like:

There are 100 students taking language classes at Austin High School. If 60 are taking
German and 75 are taking Spanish and these are the only languages taught, how many
students take both Spanish and German?

Let’s try a new approach. Say there are x students taking both languages. We could try counting
the number of students taking languages by just adding the number of students in each language, or
60+75 = 135. Since we know there are 100 students taking languages, we have made a mistake. Our
error is in counting students taking both languages twice, once for German and once for Spanish.
Thus, we must subtract from 135 the number of students taking both languages so that we only
count them once. Hence, the total number of students taking language classes is 135 — x. Setting this
equal to 100 we find x = 35.

This is the heart of the Principle of Inclusion-Exclusion, or PIE: if we count something twice,
subtract it once so we only count it once. It’s that simple! When we move from two classes to three,
the counting becomes a bit trickier, but the concept is the same. For example, let’s call the classes
A, B, and C and let the number of students in each be #(A), #(B), and #(C), respectively. To take care
of overcounting students in both classes A and B, we must subtract the number of students in both
classes, which we’ll call #(A N B). Similarly, we subtract the number of students in both B and C and
in both A and C, for a total of

#(A) + #(B) + #(C) —~#(ANB) - #(ANC) - #(BN C)
students. To convince yourself that this takes care of students enrolled in two classes, pretend you

are in exactly two of the classes. How many times are you added to the total? Subtracted? How
many times are you counted?
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You’re added three times and subtracted three times, so

Now what if you're in all three classes? all three

you're not counted at all! To take care of this, we must add back the number of students in
classes. This makes our total number of students

#(A) + #(B) + #(C) —#(A N B) —#ANC) - #(BN C) + HANBNC).

EXERCISE 17-5 Again, pretend you are in 1, 2, or 3 classes and make sure that the aforementioned
method only counts you once no matter how many times you are added or subtracted.

EXERCISE 17-6 What if there were 4 classes? How about 5 classes?

EXAMPLE 17-5 How many positive integers less than or equal to 1000 do not have 2, 3, or 5among
their prime factors?

Solution: We count the number of positive integers less than or equal to 1000 which do have
2, 3, or 5 among their prime factors and subtract that number from 1000 to find how many Flo not.
There are 1000/2 = 500 multiples of 2, |1000/3] = 333 multiples of 3 and 1000/5 = 200 mulhples.of
5 in this range, for a total of 500 + 333 + 200 = 1033 positive integers less than or equal to 1000 with
2,3, or 5 as a factor. We’ve obviously overlooked something. We've badly overcounted, b.eca’use
many numbers are multiples of more than just one of these three numbers. Applying the Principle
of Inclusion-Exclusion, we subtract from 1033 the number of multiples of both 2 and 3, of both 2 and
5, and of both 3 and 5. Finally, we then add to the result the number of integers which are multiples
of all three. )

Any number which is a multiple of 2 and 3 is a multiple of (2)(3) = 6, since 2 and 3 have no
common nontrivial factors. Hence, we seek the multiples of 6, 10, 15, and 2(3)(5) = 30. There are
[1000/6] = 166 multiples of 6, [1000/10] = 100 multiples of 10, [1000/15] = 66 multiples of 15, and
11000/30] = 33 multiples of 30. By PIE, there are

1033 — 166 — 100 — 66 + 33 = 734

integers less than or equal to 1000 with 2, 3, or 5 among their factors. Hence, there are 1000734 = 266
integers in that range which are not multiples of 2, 3, or 5.

EXERCISE 17-7 Suppose there is some number of objects placed in 1 categories A, A,,. .., A,, where
each object may be in more than one category. Let #(A;) be the number of objects in category A;.
Suppose #(A;) is the same for all 7, #(A; N A}) is the same for all distinct pairs (i, j), #(A; N AjNAy)is
the same for all triples (i, j, k), etc. Show that the Principle of Inclusion-Exclusion gives

U Az AU A = (1 )0 - (5 )40 4+ (3 )i 0.z g
” <Z>#(A1 NA2NA3 N A+ + (=1)" (:I) HAINA20--- N A).

This application of the Principle of Inclusion-Exclusion is very useful in problems containing sym-
metry.

EXAMPLE 17-6 There are four baskets numbered from 1 to 4 and four balls numbered from 1 to 4. \
Each basket is allowed to have at most two balls. In how many ways can the balls be placed in the
baskets such that no ball has the same number as the basket it is in?
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Solution: This problem has symmetry, so we apply the concepts of the previous exercise. First
we count the number of ways to put the balls in the baskets with no restrictions. There are 4! ways to
put the balls in 4 different baskets. There are (‘1’) (.1) (3)(2) ways to put two balls in one basket apd the
others in their own baskets (4 ways to pick the basket with two balls, 6 ways to pick the balls in th.at
basket, (3)(2) ways to put the other balls in different baskets). Finally, we can put two balls each in
two baskets in (;) (;) ways (6 ways to pick the two non-empty baskets and 6 ways to distribute the
balls among these baskets). Hence there are 24 + 144 + 36 = 204 ways to put the balls in the baskets.

To solve the problem, we will count the ways the balls can be put in the baskets such that at least
one ball has the same number as the basket that holds it. Let #(i) be the number of ways to fill the
baskets such that basket i holds ball i. From the previous exercise, we seek the quantity

4 4 4 4
(1>#(1)— <2>#(1n2)+ (3)#(1nzn3)— (4>#(1 n2n3n4).

For the first, after we put ball 1 in basket 1, we can either put another ball in that basket or put
all the balls in the other baskets. The former can be done in (‘;’) (32) = 27 ways (3 ways to pick the
other ball in basket 1, 32 ways to put the other balls in the other baskets); the latter can be done in
(3) 3)(@ + 3! = 24 ways, where we divide this into the case of two of the balls in one of the other
three baskets and the case of the other three being in different baskets. For #(1 N 2) we put balls 1
and 2 in baskets 1 and 2. The other two balls can be put in the baskets in 2 + 2)2)2)+(2)(2) =14
ways, where we consider the cases of putting 2, 1, or 0 of the remaining balls in the first two baskets.
(Make sure you see this.) The last two are easy. After we put 3 balls in the right baskets, the other
has four choices and we can only get them all right in 1 way. Putting these in our above expression,
there are

4(27 +24) - 6(14) + 4(4) - 1(1) = 135

ways to put the balls in the baskets so that at least one ball is in the right basket. This leaves
204 — 135 = 69 ways of filling the baskets so that no ball has the same number as the basket that
holds it.

This is a very complicated counting problem, and you may argue that you would be better off
just listing the possibilities and counting. Using the Principle of Inclusion-Exclusion is better than
listing and counting because it's awfully hard to tell if we've listed all the possibilities, and as the
number of possibilities gets large (what if there were 6 balls and 6 baskets), the listing and counting
method becomes very unreliable.

17.4 Generating Functions

5\ When it comes to counting, generating functions are the cleverest thing there is. The idea of
generating functions is that functions can be manipulated in various ways which combinatorial
quantities cannot, so to examine the properties of some combinatorial function A(k), we instead look
at the function

AQ) + AQ)x + AQ)X* + AB) + -+,
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where the coefficient A(k) of x* is the number of ways event k can occur. Perhaps the simplest
example of a useful generating function is

(6)+ ()er G2 ()
where we let A(k) = (;) for some fixed n. We could say that this is the generating function for
the number of ways we can get k heads when flipping n different coins. The power of writing
this as a function is that we can use the Binomial Theorem to convert the function to the simple
(x +1)". In Chapter 15, we saw that this function can then be used to rapidly get identities like
@) + () +---+ () =27 () + (5) +-- = (§) + (3) ++-,and so on.

Another type of generating function can be used to look at distribution problems. For example,
suppose we let A(k) be the number of ways in which we can collect $k from 5 people if each person
gives either 0, 1, or 3 dollars. Rather than writing out the generating function, we consider the
generating function for each person individually. Any single person has 1 way to give $0, 1 way to
give $1, no ways to give $2, 1 way to give $3, and no ways to give anything larger, so the individual
generating function is (1x° + 1x! + 1x3). The reason the individual function is interesting is that the
overall generating function can be found by multiplying the individual functions together! O>

Why? Consider some set of possible contributions, say $1, $3, $3, $0, $3. This corresponds to the
set of generating terms

\l7

RIS

that s, there is a one to one correspondence between sets of contributions and generating terms in the
product. Since we want to count every set of contributions once, we want to count every generating
term once. Multiplying the individual functions together does exactly this, by the distributive
property! Hence the kth term of the expansion of

A+x+22)(1+x+22)1+x+ )AL +x+ )1 +x+ %) =1 +x +2)°

will give the number of ways to collect $k from the five people.

EXERCISE 17-8 The argument above, that the overall generating function can be found by multi-
plying the individual generating functions, is the linchpin of everything we’ll do with generating
functions. Make sure you understand it well right now, or the rest of this section won’t make sense.

EXAMPLE 17-7 Ten people with one dollar each and one person with three dollars get together to
buy an eight-dollar pizza. In how many ways can they do it?

Solution: Each of the ten people with one dollar contributes a generating function (1 + x),
and the last person contributes (1 + x + x? + x°). Thus the overall generating function is

A+000 +x+ 2 +23).
By the Binomial Theorem, this becomes

(1 (D)= ()2

+ Gg) xlo) I+x+x2+2).
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Recall that we are interested in an eight dollar total contribution, which means we want the coefficient
of x%. By the distributive property, the sum becomes

l+x+2+23)+ (110>(x+x2+x3+x4)+---+ (10

10) (x10 s xll + x12 + x13),

and the coefficient of the 18 term is
10 . 10 " 10 4 10
5 6 7 8 )

EXERCISE 17-9 Write down a factored generating function for the number of solutions of e; +e2+€3 =
k, where e is even, e; odd, and e3 prime.

In dealing with generating functions, we use several identities for simplification. The Binomial
Theorem is often key, as are the geometric series identities

1+x+xz+x3+---=—1ix (17.1)
and
1_xr+1
1+x+22+ - +x = . (17.2)
1-x

For example, consider distributing 23 toys among 6 children such that no child gets more than
5 or less than 2 toys. Each child contributes a generating function x? + x> + ¥* + x>, so the overall
generating function is

@@+ +x + 00 =221+ x+ 2 + P)S.

By identity (17.2), the sum 1 + x + 2 +x3is equal to (1 — /1 - x), so our generating function is
x12(1 - x*)8(1 - x) ™. We get rid of the x' by noting that the coefficient of x2 in x'2(1 — x¥)5(1 — x) 6 is
the same as the coefficient of x'! in (1 — x*)%(1 - x) . By the Binomial Theorem, once for the positive
exponent n = 6 and once for the negative exponent n = -6, we expand this latter product into

6 6 4 6 & 6 4 _6 _ —6 —6
(- @+ @)=+ (21 - (Dre ()2
All that's left is to find the coefficient of x1. This is simple, because the only contributing terms are

—(g) (I{’), (g) ('76), and —(g) ('36). Thus the coefficient of the x!! term, and therefore the number of
ways to perform the required task, is

0@-0G)-06)

EXERCISE 17-10 In how many ways can we get a sum of 25 when 10 distinct dice are rolled?
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17.5 Partitions

One of the most beautiful applications of generating functions is in counting partitions, ways to
split an integer into parts. (For example, some partitions of 5are3+1+1,4+1,3 +2, and 5.) There
is no simple formula for the general partition problem, as you'll discover if you try to find one, but
generating functions provide an interesting window into the general problem and many variations.

To find a generating function for the number of partitions of n, you might think that it suffices to
consider that each contributing number can be 0, 1, 2,.. ., so that each contributor has an individual
generating function (1 + x + X2 e ). However, this is no good because it considers 1 + 2 and2+1
as different partitions (and furthermore, we don’t know how many contributors there are)! Instead,
we realize that a partition is just a list of numbers: the partition 4 + 3 + 3 + 1 of 11, for example, is
equivalent to the description “one 1, two 3's, one 4.” Thus we let number of 1’s in the partition be
one contributor, the number of 2’s be a contributor, and so on. The 1’s, then, contribute an individual
generating function 1+ x +x2 +---, where the 1 corresponds to zero 1’s in the partition, the x to one
1, the x2 to two 1’s, and so on.

EXERCISE 17-11 Find the individual generating function for the number of 2’s in the partition.

Since the number of k’s in the partition contributes an individual generating function given by
1+x* +x% + ..., the overall generating function is

AQ+x+2+ )1+ +x+ )1+ +20+--2)--- (17.3)

EXERCISE 17-12 Expand the product above up to the x* term. Show that the coefficient of x! is the
number of partitions of 1, the coefficient of x? is the number of partitions of 2, and similarly for 3
and 4.

EXAMPLE 17-8 Using the geometric series formula, the factor 1+ x* + x% + ... equals 1/(1 - x¥).
Thus the generating function (17.3) can also be written
1
1-x)(1-22)(1-x3)-

Once we can find a generating function for the general partition problem, we can easily specialize
it. How many ways can n be partitioned into 2’s, 3’s and 4’s? The individual generating functions
arel+x?+x*+.--,1+x>+---,and 1+ x* + -+, s0 the overall generating function is

1
1+2+x +. ) +2+8+ )1+ +8+..) = ]
( ) X e g
How many ways can n be partitioned with at most two of any integer? The individual generating
functions are 1+ x +x%, 1+ x2 + x*, 1+ x° + x%, and so on, so the overall generating function is

1+x+2)1+2+x)(1 +23 +25)..-

Granted that evaluating the nth coefficient of such generating functions, which must be done to
get a numerical answer, is not easy; however, mere possession of the generating function can allow
interesting analysis.
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5’\ EXAMPLE 17-9 Prove that the number of partitions of n in which no part appears exactly once is
equal to the number of partitions in which no part is congruent to 1 or 5 (mod 6).

Solution: We find the two generating functions separately and prove they are equal. For the
first one, the individual generating function for the number of 1’s becomes 1+ x% + x> +x* + ---.
We must delete the x because it corresponds to exactly one 1, a situation forbidden by the problem.

Similarly we must delete the second term of each individual generating function in (17.3), so the
overall generating function is

A+22+ X+ )1+ + 25+ )1+285 4+ +0) -,

which using the geometric series formula is

x2 s x8

<l+m)<l+l_xz)<l+m>---
1-x+22 1-22+x* 1—x3+x"m

—x _ 1-2 _1-2
(11—xix2)(1+1x)x(1—12+r*)(1+x2)_”

A-x01+x  (1-22)(1+2?)
1+ 1428 1+2°
1-22 1-2 1=

1 1 1

1 1

1-2 1-0 1-2 1-2 1-28 *

where the last equality is found by cancelling each 1 + x* in the numerator with a 1 — x% =
(1 + x3%)(1 - x*) farther out in the denominator, leaving a 1 — x** in the denominator. All that's left in
the denominator when we're through is 1—x* for all k not congruent to 1 or 5 (mod 6). (Confirm these
calculations yourself.) Hence this is exactly the generating function for the number of partitions into
parts not congruent to 1 or 5 (mod 6), so the generating functions are equal and we’re done.

As you've seen, effective use of generating functions requires quite a bit of skill with series
manipulation. With practice, these operations will become easy. Once you’ve learned calculus,
come back to the study of generating functions (a college discrete mathematics book may help);
the operations of integration and differentiation vastly widen the scope of generating function
applications.

17.6 Counting on Graphs

We'll start with a basic grid counting problem. Suppose Andy the Antsits 1 2 3 4 5
at point 1 and wishes to go to point 20 but can only walk down or to the right. 6 7 8
If Andy can only turn at other numbered points, how many different paths * + ¢ T

can Andy take from 1 to 20?

One such path is 1-6-11-16-17-18-19-20. Clearly to go from 1 to 20, Andy
must take 7 steps, 3 down and 4 to the right. Our problem is to count the '« ¢ 8 B2
number of orders in which Andy can take three steps to the right out of seven steps. Thus, our
answer is simply (;) = 35.

P
P
b
N
L
)
b
®da
it
v

—t
—
~N
—
ot

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

the ART of PROBLEM SOLVING: Volume 2 < 205

1 2 3 Now suppose Anna the Anteater comes and sits on point 5, so that Andy
: o s can’tsafely goto point4, 5,9, or 10. How many paths can Andy take now? Our
L problem isn’t so simple, because many of Andy'’s earlier paths are disallowed.
11 12 13 14 15 Notice that any successful path must go through either point 2 or point
i€ 17 18 19 6. Hence, if we let #(i) be the number of paths from point i to point 20, we

¢ * ¢ = have#1) = #(2) + #(6). Instead of working forward in this manner, let’s work
backwards. For example, for each of the points on the bottom row there is only 1 path to point 20,
so put a 1 beneath each of these vertices.
2 There’s only one succesful path from 15, but from point 14 we can go
170 through either point 15 or point 19. Similarly, for any point i, the number of
> paths from i to 20 is the sum of the numbers of paths from the point directly
14 15 to theright of i and from the point below i. Thus, we put a 2 below point 14,
l29 210 a 3 below 13, and so on filling out next to the last row. To go from point 8
s to point 20, we must go first to point 13, so there are 3 paths from point 8 to
20. Continuing as before, we fill out the grid with numbers representing the
number of paths from each point to point 20. Thus, we find our desired answer is 22.

4
17
1

0—105\'010:":;‘0\“.»-&
p—
N

e WeWe00WewLd

EXERCISE 17-13 Can we use our backwards counting approach on three-dimensional grid prob-
lems?

Nearly every problem involving counting on a grid can be solved working backwards as we did
in counting Andy’s paths which avoid Anna the Anteater; however, the recursive method we have
used for these grids is applicable to other types of problems as well.

EXERCISE 17-14 Mike starts at one corner of a tetrahedron. In a move, he walks along any edge to
a different corner. In how many ways can he end up where he started after 6 moves?

17.7 Counting Infinite Sets

One really astounding consequence of the one-to-one correspondence principle is that it allows us
to “count” infinite sets. Even though there is no finite number which equals the size of an infinite
set, we can use one-to-one correspondences to show that certain sets are the same size, or that one
set is bigger than another.

One usual example of an infinite set is the positive integers,
{1,2,3,4;...)
However, we can place the set of all integers in correspondence with the positive integers, like so:
12 34 56 78 910 11
01-12-23-34-4 5 -5

Since they can be placed in correspondence, the set of all integers is the same size as the set of positive
integers, even though the positive integers are wholly contained by the integers! How can this be?
When dealing with infinite sets, such oddities are not rare.

WARNING: Never say there are the same number of positive integers as all integers; there is no ‘
meaning to the phrase the number of positive integers. Refer only to the sizes of the sets involved.
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EXERCISE 17-15 Show that the sets of odd and even positive integers each have the same size as
the set of all positive integers.

EXAMPLE 17-10 Even the set of all positive rational numbers, which seems immensely lar.g.er than
the set of positive integers, is actually the same size. We make the correspondence by writing the
rationals in a grid:

B [ (G0 bt [N et et
s N NI NIN N
= W WIW WIN W=

o (G0 M [N i

We can create a similar grid for the positive integers by filling up along the diagonals as follows:

1 2 4 7
3 5 8 12
6 9 13 18

10 14 19 25

We then correspond each rational to the integer in the corresponding place in the grid.

Given all these examples, you might be starting to think that any infinite set can be placed in
one-to-one correspondence with the positive integers. Not so. The set of real numbers is larger than
the set of positive integers, as was proven by Georg Cantor in the late 1800’s. His famous diagonal
proof is one of the classic beautiful proofs of math.

The proof goes as follows. Assume that we can list all the real numbers one after the other. We
will show that there is one real number which is not in the list, contradicting the assertion that we
have listed them all. Let the list be as follows, where each a;; is a single digit:

a10-411412013. .
a0.421A22423. . .
a3p.a31A432433. . .

Now form a new number as follows: let by be any digit which is different from ayy; let b, be any digit
which is different from ag2; b3 different from a33; and so on. Consider the number

X = 0.b1b2b3b4 oo

Clearly x is different from a19.411412 - . ., since they differ in the first place after the decimal (b; # ayy).
Similarly, x is different from az0.a2142; .., since by # a3. In like manner, x must be different from
every number in our list. Thus x is not in our list, so our original assertion that the list contained all
the real numbers must have been false.

In other words, we can't list the real numbers in correspondence with the positive integers, for
no such list can contain all the reals. There is no way to correspond the real numbers to the positive
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integers: the set of reals is larger. This should be surprising—two infinite sets which are not the
same size?! Sets which can be corresponded to the positive integers are called countably infinite,
while sets which cannot be so corresponded are called uncountable.

EXAMPLE 17-11 With infinity, we invariably get strangeness. One -1 1
bizarre result is that the set of all real numbers is the same size as the set
of real numbers in any finite range, say (-1, 1). P

The one-to-one correspondence can be seen geometrically in the pic-
ture at right, where we have wrapped the segment around into a semicir-
cle. Each point P on the segment is paired in a 1-1 manner with a point P’
on the real number line by drawing the line shown.

Those with a more analytic bent might like the following correspondence better. We take

Pl

x «— tan(nx/2),

where x is in the range (~1,1), so 7x/2 spans the period (-7/2,7/2) of tangent and tan(rx/2) thus
spans the entire range (—co, ).

EXERCISE 17-16 Given two segments of lengths a and b, give both a geometric and an analytic
proof that the two sets of points are the same size.

Problems to Solve for Chapter 17

282. Five balls are numbered 1 to 5. Three boxes are numbered 1 to 3. How many distinct ways can
the balls be put in the boxes if two boxes have two balls each and the other box has the remaining
ball? (MA® 1992)

283. How many positive integers less than 101 are multiples of 5 or 7, but not both? (Mandelbrot #1)

284. In how many ways can 3 squares be chosen from a 5 by 5 grid so that no two chosen squares
are in the same row or column? (Mandelbrot #3)

285. Lines Ly, Ly, ..., L1go are distinct. All lines L4y, 1 a positive integer, are parallel to each other. All
lines L4y,-3, n a positive integer, pass through a given point A. Find the maximum number of points
of intersection of pairs of lines from the complete set (Ly, Ly, ..., Ligo}. (AHSME 1976)

286. How many solutions in positive integers are there to x; + xz + -+ + xg = 19?

287. Let the set S = {ay, a3, a3,..., a12}, where all 12 elements are distinct. We wish to form sets
each of which contain one or more elements of set S with the restriction that the subscript of each
element in a specific set must be an integral multiple of the smallest subscript in the set (e.g. the sets
{22, a4, a10), {a, a12), {as} are all acceptable.) How many such sets can be formed? (MA® 1991)

288. In how many ways can 3 Americans, 4 Germans, 2 Frenchmen, and 3 Russians sit around a
circular table if those of the same country sit together? (MA© 1991)
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289. On their return to land, the seven exiles from Gilligan'’s Island, as well as Gilligan’s pet ape, are

seated in a row for a welcome home meal. In how many ways can the eight be seated if Ginger is
tactfully seated next to neither Gilligan nor his ape? (Mandelbrot #3)

290. Twenty chairs are set up in a row for the Princeton garlic-eating contest. Only five eaters attend

the competition, but none will sit next to any other. In how many ways can the eaters be seated?
(Mandelbrot #3)

291. Poi_nts in a grid are numbered as shown. Movements from pointnumber 1 2 3 4 %
A to point number B can only be made if B > A and the two points are in the 09 8 7 6
same row or column. Find the total number of ways to go from point1to = * * = =*
point 30. (MA® 1992) 1 12 13 14 15
292. How many lines in a three-dimensional rectangular coordinate system 20 19 18 17 16

pass _thrc?ugh four distinct points of the form (i, j k), where 7, j, and k are
positive integers not exceeding four? (Can you generalize this to i, j,k < n?) 4 g2 RR

(AHSME 1981) 30 29 28 27 26

5\ 293. Six people sat down along one side of a banquet table completely ignoring their name cards. In

how many ways could this have been done so that no person was seated where his/her name card
was placed? (MA® 1992)

N
—_

294. Find generating functions for
i. the number of partitions of a number into even integers.
ii. the number of partitions of a number into different odd integers.

iii. the number of ways to give a dollar amount of change with standard U.S. bills (%1, $5, %10,
$20, $50, or $100).

iv. the number of nonnegative integer solutions of 2x + 3y + 7z = n with z < 4.

295. When (a + b + ¢ +d)'° is expanded and like terms combined, how many terms are in the result?
(MA® 1992)

5*\ 296. For any set S, let |S| denote the number of elements in S, and let n(S) be the number of subsets
of S, including the empty set and the set § itself. If A, B, and C are sets for which

n(A) +n(B) +n(C) =n(AUBUC) and |A| = |B| = 100,
then what is the minimum possible value of |A N B N C|? (AHSME 1991)

\ 297. Suppose that 7 boys and 13 girls line up in a row. Let S be the number of places in
the row where a boy and a girl are standing next to each other. For example, for the row
GBBGGGBGBGGGBGBGGBGG we have S = 12. If all possible orders of these 20 people are consid-
ered, what is the average value of 5? Can you generalize this result to a group of m boys and n girls?
(AHSME 1989)

\ 298. Let n be an even integer not less than 4. A cube with edge 7 in length (briefly, an n-cube) is
constructed from n® unit cubes (briefly, u-cubes). There are % different colors given and exactly 4
u-cubes are colored in each of these given colors. Prove that one can choose 1 u-cubes of different

colors, no two of which are in the same level (a level is a set of n? u-cubes whose centers lie in a plane
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parallel to one of the faces of the n cube). (M&IQ 1991)

299. A walk consists of a sequence of steps of length 1 taken in directions north, south, east, or west.
A walk is self-avoiding if it never passes through the same point twice. Let f(n) denote the number
of n-step self-avoiding walks which begin at the origin. Show that 2" < f(n) < 4 -3""1. (Canada 1979)

300. Let 7 be a fixed positive integer. Find the sum of all positive integers with the following

property: In base 2, it has exactly 2n digits consisting of n 1’s and 7 0’s. (The first digit cannot be 0.)
(Canada 1991)

210 » CHAPTER 17. COUNTING IN THE TWILIGHT ZONE

——the BIG PICTURE

Georg Cantor, who came up with the modern way of identifying infinite sets using 1-1
correspondences and discovered uncountable sets, discovered other weird things as well. One
of the weirdest is the Cantor set. To construct a Cantor set we start with an ordinary segment
and cut out the middle third. We then cut out the middle thirds of each subsegment which
remains, leaving four smaller segments. We continue cutting out middle thirds forever, as
shown,

U
U

We can compute the length of the Cantor set: at each step the length is multiplied by 2/3, so
the final length is (2/3)(2/3)(2/3) - -+, which tends to 0. But just because its length is 0 doesn’t
mean it contains no points! Consider our segment to be a number line from 0 to 1, where each
decimal is written in base 3. In taking out the first middle third, we take out all decimals which
start with 0.1..., leaving in those which start 0.0... or 0.2.... Similarly, taking out the second
middle thirds gets rid of those numbers which start 0.01... or 0.21..., leaving those which
start 0.00...,0.02...,0.20...,0r 0.22.... Continuing in this manner, the Cantor set contains all
numbers whose base-3 decimal representation contains no 1’s. The set is far from being empty.

The Cantor set actually contains as many points as the entire line segment! We can set up
the 1-1 correspondence as follows. Any number in the Cantor set has a decimal representation
made up of 0's and 2’s. Convert all the 2's to 1’s and consider this new representation as a
base-2 decimal representation. In this way, every number in the Cantor set corresponds to a
number in (0, 1). Similarly, every number in (0,1) corresponds to a number in the Cantor set,
by doing the reverse process: write the decimal in base 2, convert 1's to 2’s, and think of the
new decimal as a base-3 representation. This is a one to one correspondence, so the sets of
points are the same size.

So the Cantor set has length 0, but as many points as the entire segment (0,1). (Think this
one over a little before you buy it!)

Chapter 18 Again and Again page 211
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Chapter 18
Again and Again

18.1 Repeats

Often in math we have an opportunity to repeat the same operation more than once. For example,
multiplication is just repeated addition, as 2 x5 = 2+ 2 + 2 + 2 + 2, and powers are repeated
multiplication: 2° = 2 X 2 X 2 X 2 X 2. We can extend this progression a step further by considering
repeated powers, like

2

Similarly, we can construct continued fractions, like

or continued roots, like

\/2+ \/2TV2+\/2+\/§.

EXERCISE 18-1 Evaluate the continued power, fraction, and root above.

18.2 Off to Infinity

Somewhat surprisingly, continued expressions are often easiest to deal with when they are infinite,
rather than finite. For example, the finite continued root above can only be evaluated with a

calculator, while the infinite version
V2+V2+---

is handled easily with a straight calculation. We write

x=V2+V2+--.,

so that (this is the clever part)

x=V2+x.
a 211 »
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(Notice that we’re assuming that the infinite radical does have a value here; we need more advanced
tools to prove this!) We then have only to square both sides to obtain the quadratic x? = 2+x, which
factors as (x — 2)(x + 1), for solutions of x = 2 and x = —1. Since —1 is not a reasonable solution (and
is thus extraneous), the infinite continued root is equal to 2.

EXERCISE 18-2 Evaluate the following.

2 1
i 2+ 7
+
2+i¢_‘--
ii. 2+ 3 T
* 2+3’—',_,

18.3 Rational Continued Fractions

We will focus on continued fractions, as they are much more tractable than continued powers or
roots. To narrow the scope even more, we will look only at those continued fractions in which the
numerators of all the fractions are 1’s; that is, those that look like

1

an+—
a + 1

ay+e

which we call proper. We'll also require all the 4; to be positive integers.

Proper continued fractions are like decimal expansions in an important way: every rational
number has a representation as a finite proper continued fraction, and every irrational as an infinite
one. For example, let’s write down such a representation for the fraction %.

We will be a little careful and worry about the uniqueness of our representation. (In other words,
is the representation we write down the only valid one, or are there others?) We need only to notice
that every expression m is less than 1. Since we have

]
26 ' something

with 4; a positive integer, 4y must be the integer part of %, or 3. We then have

§—3+l—3+l—u+
26 726 279‘1 a2+

’
something

or

- =0t ——.
7o something

EXERCISE 18-3 Convince yourself that 2, had to equal 3 in the foregoing equations by seeing what
would have happened if it had equalled 2 or 4.
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Again, a; must be the integer part of % because is less than 1. Thus a; = 3, and

P T
something

5 1
3+ ; =a + —1—
a3+something

Continuing in the same way, a3 must be the integer part of Z, or 1, a4 must be the integer part of 2 or
2, and a5 must be the integer part of %, or 2. At this point there is nothing else left, so the complete
fraction is

EXERCISE 18-4 Verify from scratch that the fraction above does equal 52.

EXERCISE 18-5 Find the continued fraction expansions of 15‘192, %, and Z—g.

Now let’s reconsider the question of the uniqueness of our representation. At first glance, it
seems like we never had any leeway in choosing the ;. However, there is one choice which we have
overlooked. Instead of taking as = 2, we could have takenas = 1and a = 1, so thatas + ‘—}; =1+ % =2,
Thus our continued fraction could also be written

1

3+1+—1—
2+1+

Up to this somewhat trivial modification, the proper continued fraction decomposition of a rational
number is unique.

EXAMPLE 18-1 Let’s streamline our procedure for finding the continued fraction expansion of
a rational number b;. First, we take a1 = [b1]. Then a; = [1/(b) —ay)] = [bs), where we define
by = 1/(b1 —a1). Similarly, a3 = |1/(b2 - a2)], a4 = |1/(b3 —a3)], and so on. For eachi, b; = 1/(bi-1 —ai—1)
and a; = I_b,_]

EXERCISE 18-6 Recall from Volume 1 that x — | x] = (x}, the fractional part of x. Simplify the above
formulas using this notation.

18.4 Real Continued Fractions

We can easily extend the work of the previous section to writing down proper continued fractions
for real numbers as well. For example, take b; = V2 = 1.4142.... We compute the coefficients in the
same way as for a rational number: a; = |by] = 1,a, = [1/(b; —ay)] = |2.4142.. .] =2, and so on.
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EXERCISE 18-7 Prove that the continued fraction expansion of an irrational number cannot termi-
nate.

EXERCISE 18-8 Find the first few terms in the proper continued fraction expansion of . =
3.14159265.. ... A calculator is handy, though not necessary.

EXERCISE 18-9 Develop a quick method to find terms of continued fractions on a calculator. Only
a few steps should be necessary for each term.

The continued fraction for an irrational number is always infinite. If we consider the various
fractions obtained by terminating the continued fraction at some point, these rational numbers will
converge to the irrational number as the number of terms included increases. For example, we have

Getsl_
2+ pres
as you should be able to verify fairly easily. If we terminate the continued fraction after the first 1,

we get 1. After the first 2, we get 1 + 1 = 1.5. After the second 2, we get 12 = 1.4. After the third 2,
17; = 1.417. And so on.

EXERCISE 18-10 Find the first few convergent fractions in the proper continued fraction for 7 which
you wrote down in Exercise 18-8.

EXAMPLE 18-2 1t's too difficult to prove here, but the continued fraction expansion of any irrational
square root 7 is periodic. For example, let’s compute the continued fraction for V17. We have
LV17] = 4 = ay; [1/.1231] = [8.1231] = 8 s0 @, = 8; |1/.1231] = |8.1231] = 8 s0 a3 = 8; and so on.
Thus the continued fraction expansion is

VFoge—1_
8+ T
which is periodic with period 1.

Convergents

The fraction obtained by cutting off a continued fraction after k steps are called the kth convergent

Cy. For example, in the continued fraction for V17,C1=4,C, =4 + % = %l and C3 =4+ 1 o
+ =
8 _2%8 :
65 65
To get a handle on convergents, we can create two sequences Py and Qy such that C; = P/ Qx
in lowest terms. Since C; = a;, we immediately have P; = a; and o))
1 _ amm+l

4+

= 1. Similarly, since

C=a+ 5 m we have P; = a2a1 +1 and Q; = a,. We won't prove it here, but it can be
shown that for k > 2, we have the recursions

Py = aPrq+ Py

Qe = ;Qr-1 + Q2.
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EXAMPLE 18-3 The third convergent of a generic continued fraction is

as aiazaz +ay +as
1

Cs=a + 1 a +
3= 1 — =
By 1 aaz +1 axaz + 1

yielding P3 = a1a2a3 + a1 + a3 = a3(aza; + 1) + ay = a3P2 + Py and Q3 = azaz + 1 = a3Q2 + Q1.

EXERCISE 18-11 Prove that PyQps1 — Pre1 Qx = (~1)%.

Problems to Solve for Chapter 18

301. Solve for x > 0: )
e‘""r =2,

(MA® 1990)

11
302. Find z cf, where
k=1
1

n + _——].
2n + 50

ty =

(Mandelbrot #3)
303. Find the continued fraction expansion for a number of the form Vk? + 1. What is its period?

304. Find the infinite continued fraction for the golden ratio ¢ = (1 + V5)/2 and the first five
convergents.

305. Find the sum of A and B in simplest terms if

A=V6+2v5-V6-2+5

and

Chapter 19 Probability page 216
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Chapter 19
Probability

Many probability problems are merely a pair of counting problems: we count the number of possi-
bilities and the number of desired outcomes and we’re done. Many others are simple applications
of multiplication. Both of these methods, as well as casework, are addressed at length in Volume 1.
While some of the questions at the end of the chapter require these methods, we will concentrate
primarily on new material here.

19.1 Review, Definitions, and Notation

The probability the event A occurs is written P(A). Similarly, the probability that event A does not
occur is P(A’), where A’ is read ‘not A.” (Sometimes ‘not A’ is written A.) Since A either happens or
it doesn’t, P(A) = 1 — P(A’).

If we are given two events A and B, the probability that they both occur is P(A N B), where the
N means ‘and.” The probability that at least one of the events occurs is P(A U B), where the U means
‘o

Two events are called uncorrelated (or independent) if they have no bearing on each other. For
example, two consecutive flips of a coin are uncorrelated because the result of the second flip in
no way depends on the first flip. The probability of two uncorrelated events both occurring is the

product of the probabilities of each event, or
P(A N B) = P(A) - P(B)

for uncorrelated events A and B.

Two events are called mutually exclusive if both events cannot simultaneously occur. Thus,
rolling a 1 on a die and rolling a 2 on a die are mutually exclusive for a single roll, since we can’t roll
both a 1 and a 2 on the same roll. For mutually exclusive events, the probability of one or the other
occurring is the sum of the probabilities of each of the two events, or

P(A U B) = P(A) + P(B).

Make sure you understand these results before you go on. Don’t bog yourself down too much
with symbols; let common sense be your guide. Probability is mostly about thinking, and using
symbols excessively will often lead you astray.

< 216 >
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19.2 Going a Step Further
Let’s try applying the principles of the previous section to the following problem.

What is the probability of rolling an even number or a multiple of 3 on a single roll of a
six-sided die?

Since P(even number) = 3/6 = 1/2 and P(multiple of 3) = 2/6 = 1/3, we may think our desired
probability is 1/2 +1/3 = 5/6. We would be wrong. Applying counting principles to solve the
problem, we have 4 desired outcomes {2,3,4,6) out of 6 possible, for a probability of 4/6 = 2/3.
What happened?

We went wrong in adding the probabilities of the two events. We cannot do so because they
are not mutually exclusive; a roll of 6 satisfies both categories and hence we cannot simply apply
our addition principle. The problem can be solved in much the same way as we attacked similar
problems in counting—using the Principle of Inclusion-Exclusion. The probability of either event A
or event B occurring is the probability of A plus that of B minus the probability of both happening,
or

P(A U B) = P(A) + P(B) - P(A N B).

EXERCISE 19-1 How does the above formula reduce to our simple addition rule if A and B are
mutually exclusive events?

EXERCISE 19-2 Find a similar expression to the one above for P(A U B U C).

19.3 Geometry and Probability

While probability and geometry seem to be on opposite ends of the mathematical spectrum, there are
a couple classes of problems in which they go hand in hand. Most probability problems involving
geometry are clearly geometry problems; the problem itself involves squares or circles or other
figures. Other problems which require a geometric approach are far more subtle. As an example of
the former type, consider the following problem.

A point is chosen at random inside a circle of radius 2. What is the probability that the
point is within one unit of the center of the circle?

First we draw the problem. The region of all possible points is circle A and the

region of all desirable points is circle B. The probability is merely the ratio of the
area of the desired region to the area of the possible region, or n/(4n) = 1/4. A

EXERCISE 19-3 A point is chosen at random inside a square which has side length 4. What is the
probability that the point is within 1 inch of a side of the square?
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In other problems, the necessity of geometry is much less apparent. Try this one:

A woman arrives at an airport between 11 and 12 o’clock. She waits for her husband for
10 minutes and if he doesn’t arrive, she hails a taxi (and he’s in a lot of trouble!). Her
husband shows up at the airport at some time between 11 and 11:50. He waits for 20
minutes and if his wife hasn’t shown up, he goes home (and he’s in a lot of trouble!).
What is the probability that the woman rides home with her husband?

Try this problem before reading further; you'll find that our current library of methods are
largely useless. Why? It's because we are dealing with continuous quantities rather than discrete
(i.e. countable) ones. We can’t investigate cases because there are infinitely many cases. For example,
the man could show up at 11:01:52 or 11:01:53 or any other second, or millisecond, or any fraction of
a second. This is our main clue to use geometry.

11:50 H We can best describe all times between 11 and 12 o’clock
Diman too late € by denoting 11:00 and 12:00 as two points on a number line
G andlettingall points between represent times between 11 and
12. This is line AB in the diagram. If we plot the man’s times
man (from 11:00 to 11:50) vertically (from A to D), we create a grid
of all possible pairings of their arrival times. For example,
point E represents the man arriving at 11:10 and the woman
= fantoocarly |  arriving at 11:00.
B The space of all possible points is the rectangle ABCD.
1100 Fwoman 1200 Now we must find all those points for which the woman
meets her husband. Suppose the man arrives at 11:00. The
woman can then arrive at any time from 11:00 to 11:20 and still meet her husband. Thus, the entire
segment AF is in the desired region. (The circular points mark off 10 minute intervals.) If the man
arrives x minutes after 11:00, the woman can arrive as late as x + 20 minutes after 11:00 and still meet
her husband. This correlates to line FG in the figure. Similarly, she can arrive up to x — 10 minutes
before her husband (since she’ll wait for at most 10 minutes). This corresponds to EH in the diagram.
The area above EH corresponds to the man arriving after the woman has left and the portion to the
right of FG represents the man showing up too early and leaving. Make sure you see both of these.
If we let each 10 minute interval be a segment of length 1, so that AD = 5 and AB = 6, the area of
the possible region is [ABCD] = 30 and that of the desired region is [EAFGCH] = [ABCD] — [FBG] -
[HDE] = 30 — 8 — 8 = 14. Hence, our probability is 14/30 = 7/15.

EXERCISE 19-4 Reread the previous problem. What does CG represent? How about CH? Do not
proceed until you understand the problem entirely.

EXERCISE 19-5 Two numbers (not necessarily integers) are chosen at random between 0 and 10.
What is the probability that they differ by no more than 5?

EXERCISE 19-6 How would the previous exercise change if it read ‘“Two integers are chosen. ..’
instead?
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Determining whether or not to use geometry is usually pretty easy. If the problem involves
discrete choices, meaning that there are a countable number of cases, then graphing is not the right
way to go. Graphing is useful for problems involving continuous quantities, such as arrival times
or real numbers (as opposed to integers). The problems don’t always involve areas; sometimes we
use merely lengths or even volumes. Finally, take your time in determining the desired region; this
is usually the most difficult part of the problem.

19.4 Conditional Probability

Welcome to Let’s Make a Deal! In one of the boxes A, B, and C is $1,000,000! Which box do you ‘5"\

choose? You choose box C, a most splendid choice I must say. I'm going to help you out now. I'm
gonna let you know one of the boxes which does not contain the money. I peek in the boxes and
announce that box A does not contain the big bucks. Now, if you want to change and take box B,
that’s fine. What will you do, keep C or try B instead?

This is a loose formulation of the Monty Hall problem. At first glance, you might say that the
money is equally likely to be in B or C, so changing doesn’t help at all; however, consider the
probability of winning this game. If you never change, the only way you win is that you chose the
right box first, a 1/3 chance. If you change instead, you will always win if you pick a wrong box
first, because after I expose one wrong box, the other unchosen box is a winner. Since you have a 2/3
chance of picking the wrong box initially, you have a 2/3 chance of winning if you accept my offer
to switch boxes. Amazing, seems impossible, but true. Try the game on a few friends and convince
yourself that it pays to change when given the option.

EXERCISE 19-7 Still not convinced? Suppose there are 1000 boxes. You pick one, and I name 998
of the boxes losers. Are you still going to stick with your choice or are you going to take the one
unchosen box I conspicuously skipped over?

This is an example of conditional probability, in which we are given some known facts in
addition to the basic problem. In the Monty Hall problem, the basic problem is choosing the right
box, while the additional fact is knowing an unchosen box which does not have the money. Let's try
another problem.

Suppose I have two cards, one with a blue side and a red side and the other with two
red sides. I choose one at random and place it on the table. The top is red. What is the
probability that the other side is also red?

The answer is not 1/2! We must consider all cases which satisfy our given fact that the side we
see is red. There are three, not two, cases: each side of the two sided red card (these are two different
cases) and the one red side of the blue and red card. Clearly the third case will not be red on the
other side, while each of the first two cases will reveal a red side when the card is flipped. Since
each of the three cases is equally likely, our probability is 2/3 because we have 2 successes out of 3
possibilities.
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EXERCISE 19-8 When I first heard the prior solution, I was very skeptical, so I took a couple of
cards, painted them as in the problem, and ran my own little experiment several hundred times until
convinced that the probability was indeed 2/3 rather than 1/2. If you too are skeptical, try running
a similar experiment yourself.

Let’s formalize our discussion a bit before proceeding. When we are asked to find the probability
that event A occurs given that event B has occurred, we consider only those cases where B happens
and find in what portion of those event A occurs as well. We write the probability that A happens,
given that B is true, as P(A|B). We can write

P(ANB)
P(B) '

&

P(AIB) =

since our desired probability is the ratio of the portion of cases where both A and B are true (P(ANB))

to the portion of cases in which B is true (P(B)). We don’t always need to use this formula to solve

_, conditional probability problems, but it is often very useful. Many problems can be solved by merely

" counting the number of cases in which B occurs and those in which both A and B occur as we did

‘f in the Monty Hall and card problems. WARNING: This simple counting approach only works if all

cases are equally likely. Later in the chapter we will discuss an example in which we must use the
formula rather than limiting our case search to those in which B is true.

Trying the formula on our card example, event B is ‘a given side is red” and event A is ‘both
sides are red.” Thus, P(A N B) = 1/2 (since 1/2 of the cards with a red side have two red sides)
and P(B) = 3/4 (since 3 out of 4 sides are red). Notice that we determine these two probabilities
independently. Finally, we find P(A|B) = (1/2)/(3/4) = 2/3. Make sure you see the difference
between P(A N B) and P(A|B). The former is the probability that a card with a red side has two red
sides, while the latter is the probability that the both sides are red given that a specific side is red.
The difference is subtle, but very significant.

Comparing our two methods of solving the card problem, we see that the formula for condi-
tional probability allows us to find the probability with a few short computations rather than using
casework. In many problems, such as the following example, the formula is much easier to use than
casework.

EXAMPLE 19-1 Bag X has 5 white marbles and 2 black marbles. Bag Y has 3 white marbles and 5
black marbles. A bag is chosen at random and a marble taken from the bag. The marble is white;
what is the probability that the bag was bag X?
Solution: Event B is ‘the ball is white,” while event A is ‘bag X is chosen.” Thus,
P(A N B) = P(bag X) - P(white ball from bag X) = (1/2)(5/7) = 5/14.

For the probability of choosing a white ball, we must consider the mutually exclusive events of the
ball coming from bag X and coming from bag Y. Thus,

P(B) = P(white from X) + P(white from Y) = (%) 2)+ (%) (3)- &
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Hence, the probability that the bag was bag X given that the ball chosen is white is

PANB) _ 5/14 _ 40
P(B) ~ 61/112 61’

P(A|B) =

WARNING: A very common mistake on problems like the previous example is to reason that ‘/
there are 5 white marbles in bag X and 3 in bag Y, so the probability that the marble came from bag
X is 5/8. This is NOT a sound argument because each marble is not equally likely to be chosen!

(Why?) Don’t make the same mistake. What if there were 7000 black marbles in bag X along with
the 5 white ones? The likelihood that one of the white balls in bag X is chosen is now very, very
small.

Perhaps geometry can help convince the skeptics. Considering
our bags and balls, draw two congruent rectangles of area 1 to
represent our bags. (The rectangles are equal because the bags are
equally likely to be chosen.) Split the top rectangle, corresponding
to bag X, into 7 equal rectangles, one for each ball. Similarly split
the bottom rectangle, bag Y, into 8 rectangles. Shade rectangles * =
corresponding to the black marbles. Then P(A N B)/P(B) is the ratio of the white area in the top
rectangle to the total white area, or

P(ANB) 2 40
5,3 61
Note that the small rectangles in the bottom do not equal those in the top. (What happens when

there are 7000 black and 5 white marbles in bag X?) Remember, this is not a technique, but rather a
tool to help you understand how conditional probability works.

EXERCISE 19-9 Suppose only one percent of the population has the disease mathphoberia. We
design a test which diagnoses the disease successfully in afflicted patients 90% of the time. Unfor-
tunately, 20% of the time it reports that the person has mathphoberia, when in fact they don’t. The
test reports that I have mathphoberia. What is the probability that the test is correct? How can we
improve the accuracy of our testing procedure?

Conceptually, conditional probability can be very difficult to handle if it's new to you. Be
skeptical; it took me quite a while to convince myself that conditional probability indeed ‘works.’

Problems to Solve for Chapter 19

306. Find the probability that the ace of spades lies next to the jack of diamonds in an ordinary deck
of 52 playing cards. (MA® 1991)

307. There are 4 black marbles and 2 white marbles in bag A. In bag B, there are 3 black and 5 white
marbles. A bag is randomly chosen and a marble is chosen from the bag. The marble is black; what
is the probability that it came from bag A? (MA® 1992)
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308. In the World Series, two teams play each other repeatedly until one team has won a total of 4
games, then the Series ends. If each team is equally likely to win each game, what is the probability
that the Series ends in exactly 6 games? (MA© 1992)

309. If three successive rolls of a die are all greater than three, what is the probability that they are
all the same? (MA® 1990)

310. A circular coin of radius 1 cm. is dropped near the center of a chessboard (8 squares on a side)
comprised of squares with sides of 2 cm. What is the probability that the coin lands so that it is
entirely within one square? (That is, it may touch but not cross any of the lines.) A line is considered
to have zero width. (MA® 1990)

311. If a number is selected at random from the set of all five-digit numbers in which the sum of the
digits is equal to 43, what is the probability that this number will be divisible by 11? (AHSME 1970)

312. Three balls marked 1, 2, and 3 are placed in an urn. One ball is drawn, its number recorded, and
then the ball is returned to the urn. This process is repeated and then repeated once more, and each
ball is equally likely to be drawn on each occasion. If the sum of the numbers recorded is 6, what is
the probability that the ball numbered 2 was drawn all three times? (AHSME 1983)

313. In an obscure card game, each player is dealt six cards from a standard deck of 52 cards. If a
player receives exactly two fives, she wins. What is the probability of being dealt a winning hand?
(Leave your answer as a product of combinations.) (MA© 1990)

314. A class contains 5 boys and 5 girls. For the class banquet, they select seats at random around a
circular table that seats 10. What is the probability that some two girls will sit next to one another?
(MA® 1991)

315. On the average, one-fifth of Alabamians are compulsive liars; the rest always tell the truth. Sam
asks three Alabamians if it is raining, and all say yes. What is the probability that it is in fact raining?
(Don’t take offense; both of the authors are from ‘Bamal) (Mandelbrot #3)

316. Some people play poker with two jokers in a 54-card deck. (The jokers are used as wild cards;
they can represent any card.) Under these conditions what is the probability of being dealt five of a
kind in a hand of five cards? (MA®© 1990)

317. An integer is chosen at random from {x | 0 < x < 500}. Find the probability that this integer is
divisible by 7 or 11. (MA© 1991)

318. A screen covering the front of a fireplace has wires 1 mm in diameter, spaced in a mesh that has
5 mm square openings between the wires. A spark 2 mm in diameter pops out of the fire and heads
directly toward the screen. What is the probability that the spark misses the wires? (MA® 1987)

319. If P is a point randomly placed on AB with a midpoint M, what is the probability that AP, PB,
and AM can be made to form a triangle? (MA® 1991)

320. The amount 2.5 is split into two nonnegative real numbers uniformly at random, for instance,
into 2.143 and .357, or into V3 and 2.5 — V3. Then each number is rounded to its nearest integer, for
instance, 2 and 0 in the first case above, 2 and 1 in the second. What is the probability that the two
integers sum to 37 (AHSME 1987)
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321. A point P is chosen at random in the coordinate plane. What is the probability that the unit 5\
circle with center P contains exactly two lattice points in its interior? (Mandelbrot #2)

322. Three points A, B, and C are selected at random on the circumference of a circle. Find the 5'\
probability that the points lie on a semicircle. (MA© 1991)

323. Three numbers are chosen at random between 0 and 1. What is the probability that the difference 5’\
between the greatest and the least is less than 1/3? (Mandelbrot #3)

Chapter 20 Find it and make it page 224
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Chapter 20
Find It and Make It

This chapter deals with locus and construction problems. These geometry problems are the true test
of your knowledge of the very fundamentals of geometry, as the solutions to these problems rely on
the basics which make geometry ‘work.’

20.1 Locus

Just as a number which satisfies an equation is called a solution to the equation, the set of points
which satisfies a set of criteria is called the locus of the criteria. One example of a locus is a circle; it
is the set of all points in a plane equidistant from a given point. Before we move on to more difficult
loci, we'll examine a few more simple examples like the circle.

Suppose we remove the ‘in a plane’ constraint on our set of points equidistant from a given
point. The resulting locus is a sphere rather than a circle. Generally, there’s a considerable difference
between a three dimensional locus and two dimensional one. Most problems are two dimensional,
and in this book you can assume the problem is two dimensional unless we state differently.

Now that we’ve done one point, let’s try two. What is the locus of all points which are equidistant
from two given points? That is, given points A and B, find all points C such that AC = CB. Clearly
the midpoint of AB is one such point, but are there any others? If so, how can we describe them?

C Let M be the midpoint of AB and point C be a point such that AC = BC. By
A SSS congruence, we have AAMC = ABMC so that ZAMC = /BMC. Since AMB is
a straight line, ZAMC = /BMC = 90°. Hence any point C that satisfies AC = BC
is on the perpendicular bisector of AB. Does this mean that we can conclude that
our desired locus is the perpendicular bisector of AB? NO! We've only proven that
every point in the locus is on the perpendicular bisector; we have not proved that every point on the
perpendicular bisector is in the locus. (Make sure you see the distinction.) Fortunately this is very
easy to prove in the given problem. Again let M be the midpoint of AB, and let D be some point
on the perpendicular bisector of AB. Since DM = DM, AM = BM, and /AMD = /BMD, we have
AAMD = ABMD and AD = BD. Hence, all points on the perpendicular bisector are in the locus.
Now we can conclude that the locus is the perpendicular bisector of the segment.
Locus problems are two-part problems! Once we have decided that the locus is T (we often
choose a symbol to represent the locus; capital Greek letters are often chosen for this because Greek
letters are fun and lowercase ones usually stand for angles), we must prove that every point that

M
B

&
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satisfies the restrictions of the problem is on I, and then prove that every point on I satisfies the
problem. Two parts; when doing a proof involving a locus you must not forget to do both.

Let’s consider points equidistant from lines. In a plane, the set of points equidistant from a given
line [ is a pair of lines parallel to I. In space, the locus of points equidistant from a line becomes
a cylinder. Stepping up to two lines, we find that the locus of points which are equidistant from
non-parallel lines I and m is the pair of angle bisectors of the angles formed by ! and m.

EXERCISE 20-1 Given lines I and m which intersect at O, prove that the locus of all points C such
that the distances from C to I and m are the same is the pair of angle bisectors of the angles formed
by land m at O.

EXERCISE 20-2 What is the locus of all points in space equidistant from a given plane?

Although our introductory examples of locus problems are pretty simple, locus problems can get
quite tough very quickly. Thus we'll talk about how to attack more difficult locus problems. First,
play with the restraints of the problem until you can develop at least a guess of what the locus might
be. This is best done by finding a few points (a simple sketch will do) on the locus. A pattern will
usually emerge. Above, if we found a few points equidistant from A and B, we would find that the
locus looked like a line. Once you have a guess, try to prove you are right. This is usually the hard
part.

We'll show you how to develop this thought process by going through a few examples.

Let P be an interior point of a circle other than the center K. Take all chords of the
circle which pass through P and determine their midpoints. What is the locus of these
midpoints? (AHSME 1975)

First let’s find a few of these midpoints. Drawing the chord through P and K, we find that K is in
the locus. Drawing the chord through P perpendicular to PK (i.e. a diameter), we find that P is in the
locus (since a diameter perpendicular to a chord bisects the chord). If we sketch a few more points,
the locus appears to be a curve of some sort. Remember this: if the locus appears to be a curve, it is
very likely a circle or some portion thereof! After drawing a few more points, it seems our desired
circle may be the circle with PK as its diameter.

We resort to fundamentals to prove our guess. Consider the shown B
chord with midpoint A. Recall that the perpendicular bisector of any chord
of a circle passes through the center of the circle. Hence, the perpendicular {“
through A passes through K. Since £PAK = 90°, LPAK is inscribed in the \

semicircular arc PK. From this we see that any point on the locus is on the
circle with diameter PK.
We must also show that any point on this circle is in the locus. Let A be
any point on the circle. If we draw the chord BC through A perpendicular
to AK, the line will pass through P (since the line is perpendicular to chord AK of the circle with
diameter PK, it must also pass through P). Since the line through the center K is perpendicular to
chord BC at A, it bisects BC. Hence, A is the midpoint of a chord which passes through P and thus
is in our locus. We have finally completed our proof that the locus is the circle with diameter PK.
There are several lessons to take from this proof. First is the ‘guess and prove’ method we used:
we experimented until we found what the locus was likely to be; then we proved what the locus
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was. Second, curved loci are usually circles or portions of circles. Finally, we saw a very effective
method of proving a locus is a circle. We used the notion that all angles inscribed in the same arc are
equal. In fact, we used this notion in reverse. We found a whole family of equal angles (in this case
right angles like /PAK) whose sides intersect at P and K; we then deduced that the vertices of these
angles must all be on the same circle. We will examine this concept further below.

EXAMPLE 20-1 If points A and B are fixed, find the locus of all points C such that LACB = a, for
some fixed acute angle a.

X Solution: Consider points X and Y which are in the locus and on the same “side’
A Of AB. Since ZAXB = /AYB, X, Y, A, and B are concyclic. Similarly, we can show
that all points in the locus on the same ‘side’ of AB as X are on the same circle as
Y X, A, and B. Proving the second part of our locus problem, that all the points on
B major arc AXB are in the locus, is pretty simple. Any point Z on this arc is such
that ZAZB = /AXB = a, so that Z is in the locus. Hence, we may be tempted to say
that the circumcircle of AAXB is the locus. We would be wrong.

In the above diagram, points on minor arc AB are not in the locus. On
that side of AB, we have another major arc as part of the locus and the whole
locus is as shown at the right. Note that if @ = 90°, the locus becomes the
¥ circle with diameter AB. (Why?)
‘ WARNING: Always make sure you check all points on a circle to see if
they are indeed in the locus; often one or more particular points will need to be omitted from the
locus. In this example, our proof covers all points on the shown arcs except A and B. Taking these
points into special consideration, we find that they are not in the locus. (Why?)

N

O

a

The method of equal inscribed angles is not the only useful method B
to prove that a locus is a circle. An equally useful and more fundamental
technique is the very definition of a circle: prove that every point in the locus
is equidistant from a given point. In the earlier example in the text we can “
do this by letting M (not shown) be the midpoint of PK. From right triangle
PAK, since AM is the median to the hypotenuse PK, AM = PM. Similarly, all
points on the locus are PM away from point M, so that the circle with radius
PM and center M passes through all the points in the locus.
Stay patient with locus problems. Remember that most of your fundamental tools, even analytic
geometry, can be useful, most notably all your knowledge about circles.

EXAMPLE 20-2 Points A and B are 5 units apart. How many lines in a given plane containing A
and B are 2 units from A and 3 units from B? (AHSME 1990)

Solution: Any line which is two points away from A is tangent to the circle with radius 2
and center A. Likewise any line 3 units from B is tangent to the circle with radius 3 and center B.
(This is a good way to view distances from points to lines in general.) Drawing the two circles, we
note that the desired lines are those lines which are tangent to both circles. Since AB = 5, the circles
are externally tangent, so there are only 3 common tangents.
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EXERCISE 20-3 Segment AB is a fixed diameter of a circle whose center is O. From some point C
on the circle, a chord CD is drawn perpendicular to AB. Let P be the intersection of the bisector of
LOCD and the circle which is not point C. Find the locus of P as C covers all points on the circle

except A and B. (AHSME 1951)

20.2 Construction

Like locus problems, constructions will make you use the fundamentals of geometry to do at first
seemingly simple tasks which can grow more and more complex. Construction problems involv‘e
creating a specific figure using only a straightedge and a compass. Many sources, including @s
book, will use ‘ruler’ interchangeably with ‘straightedge;’ whichever tool you use, you cannot use it
to make measurements. The ruler in construction problems is used only to make straight lines.

X Like we did in the previous section, we'll start with the basics. How would you
find the midpoint of a given segment with just a ruler and compass? (Remember,
no measuring allowed!) Let the segment be AB. Use your compass to draw a

’ 4 circular arc with center A as shown and then draw a circle with this same radius

and center B. Let the intersection points of these circles be X and Y. Since the

Y original arcs were of equal circles, X and Y are midway between A and B. Hence,

the intersection XY and AB is the midpoint of AB. (We also see that XY is the perpendicular bisector
of AB.)

EXERCISE 20-4 With a real ruler and compass, execute this construction.

EXAMPLE 20-3 Construct the angle bisector of a given angle.

Solution: We'll take a very similar approach to the one we used to find

B the perpendicular bisector. Let A be the vertex of the angle. Draw an arc

D with center A intersecting the sides of the angle at B and C. Since the angle

bisector is equidistant from the sides of the angle, we draw arcs of equal

A € radius centered at B and C. Let the intersection of these arcs be D. We claim
that AD is the angle bisector.

However, a claim isn’t good enough; we have to prove it. Since they are radii of the same circle,
AC = AB. As radii of equal circles, we have BD = CD. Since AD = AD, we then have AABD = AACD
by SSS congruence. Thus, we find £BAD = (CAD, and AD bisects ZBAC. Like locus problems,
constructions are two part problems: find and describe the construction, then prove that it works.

There is a certain battery of standard constructions which you need to know to attack construction
problems. When working on more advanced problems, you can assume these basic construction
methods work without proof. The authors strongly recommend that you actually do the construc-

tions as we go.
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We'll start with parallel lines. Suppose we are given a line / and a point A
through which we wish to draw a line parallel to .. We do this by using the angle
equalities we know hold when parallel lines are cut by a transversal. Hence, we
first draw any transversal m through A intersecting ! at B. We make a parallel line
by copying the angle formed by m and ! at B to an angle at A.

To copy the angle, we first draw an arc centered at B which intersects m and !l at
Cand D as shown. Draw an arc of equal radius with center A and let its intersection
with m be E. We complete our copying by drawing an arc with center E and radius CD. This arc
intersects the arc we drew with center A at point F. Since AE = BC, AF = BD, and EF = CD, we have
copied ABCD at point A. Hence, ZEAF = /CBD and BD || AF. Remember this construction not only
for the parallel line construction, but also for the method of copying an angle.

Perpendicular lines are a bit easier. First, for drawing
a perpendicular to line I through a point A on line I, we D
draw a circle with center A and let the points where the *
circle intersects / be B and C. The perpendicular bisector Bmc m

of BC passes through A and is our desired line. Similarly,
if we want a perpendicular line through point D not on
line m, we draw a circle with center D that intersects line m. Call the intersection points E and F.
Again, the perpendicular bisector of EF is the desired perpendicular line through D. Since we know
how to construct a perpendicular bisector, we know how to draw a perpendicular line.

The ruler and the compass are the tools of the trade, and the above methods are your primary
weapons. Once you can complete the following exercise, you can learn how to attack almost any
problem.

EXERCISE 20-5 Draw a triangle and construct its incenter, circumcenter, centroid, orthocenter,
incircle, and circumcircle. Don’t go on until you can do this problem entirely.

EXERCISE 20-6 Given a segment AB, construct a square with AB as one of its sides and another
square with AB as one of its diagonals.

EXAMPLE 20-4 How would you construct a 45° angle?

Solution: Construct a square as in the previous exercise, then draw a diagonal. The diago-
nal forms 45° angles with the sides.

EXERCISE 20-7 Given a segment of length 1, construct a segment of length V17.

When solving more difficult construction problems, your initial tool should be your brain and
perhaps your pencil. Leave the compass and ruler alone until you make some headway in solving
the problem. Construction problems are geometry problems first, drawing problems second.

One very important technique in attacking constructions is that of relaxing a constraint. In intro-
ducing this concept, we will solve a problem used by Samuel Vandervelde to introduce constructions
for the 1993-94 Mandelbrot Competition.

Given AABC, with £C obtuse, construct a square PQRS such that P and Qareon AB, R is
on BC, and S is on AC.

After staring at the problem for a while as written, nothing stands out.
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C Let’s try an easier problem instead, that of constructing a
S R square with three of the vertices on AABC. We relax the con-
g straint that R be on BC. Let P’Q'R’S’ be a square such that P’
R and Q' are on AB and S’ is on AC.
A PQ P 0 B We construct this square by picking a point S’ on AC and

drawing a perpendicular line to AB which meets AB at P’. The
side of the square then has length P’S’. Construct the rest of the square as in Exercise 20-6. If we
construct a bunch of these squares, we'll see that the upper right corners (the R’’s) appear collinear.
Let’s see. Continue AR’ to meet BC at R and draw rectangle PQRS by drawing RS || AB and RQ and
SP perpendicular to AB. From the many parallel lines in the diagram, we have AAS’R’ ~ AASR and
AR'Q'A ~ ARQA. Hence,
RQ _RA RS
R'Q T R'AT RS
Since S'R" = R'Q’, we have RS = RQ and rectangle PQRS is a square. Thus, by relaxing a constraint
(that R be on BC), we have found a construction: choose any point S’ on AC and draw the perpen-
dicular to AB meeting AB at P’. Use S’P’ to complete the construction of square P’Q’R’S’. Draw ray
AR’ to find R on BC, then construct PQRS by drawing lines through R parallel and perpendicular to
AB.

Notice how in this construction we have used many of our basic geometry tools. As you become
more proficient at constructions, you will add more elementary constructions to your arsenal, which
you can then employ with little brain-racking. These basic constructions include the construction of
squares, special angles (such as 60° or 30°), equilateral triangles, and other regular polygons.

EXAMPLE 20-5 Find four points on segment AB which divide AB into five segments of equal length.

Solution: There’s no clear way to split the segment into 5 equal pieces, but Y zZ -1
we can create a new segment AZ chopped into five equal pieces by drawing X
line I through A and making five equal arcs as shown. We first draw a circle v W
with center A and arbitrary radius AV. We then draw a circle with center
V and radius AV, thus finding W. Going on, we find X, Y, and Z, as well. CDEF B
Now we have a segment, AZ, which is divided into 5 equal segments. We use this to split AB into
5 equal parts by drawing ZB, then constructing lines parallel to ZB through Y, X, W, and V. The
intersections of these lines with AB form the desired points.

We prove that this construction works by noting that
AACV ~ AADW ~ AAEX ~ AAFY ~ AABZ.
Since AV = VW = WX = XY = YZ, we deduce that AC = CD = DE = EF = FB, as desired.

EXERCISE 20-8 How can we adapt the construction in the previous example to find point P on AB
such that AP/PB = p/q for any pair of integers (p, )?

Once again, don’t reach for your ruler and compass as soon as you see a construction problem.
Treat it like a geometry problem, find the solution, then break out the toys to see if your method
works. Constructions are a lot of fun and can be wonderfully challenging. As you continue your
study in geometry, keep the challenge of construction always in your mind; every once in a while
you will stumble on a diagram whose construction may very well be more interesting than the
intended problem or lesson.
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<D < EXERCISE 20-9 Given segments of length a and b, construct a segment of length Vab.

Problems to Solve for Chapter 20

324. What is the locus of the vertices of all possible triangles that have the same base and a fixed
area? (MA® 1991)

325. Giovanni finds a treasure map on which a large circle is drawn. Written on the map is the
inscription, “Ye shall find the great treasure buried at the center of the circle!!” Unfortunately, the

center is not marked on the map. How can Giovanni find the treasure without digging hundreds of
holes?

326. Construct an equilateral triangle.

327. What is the locus of the centers of all circles of given radius 4, in the same plane, passing through
a fixed point? (AHSME 1960)

328. How many points are equidistant from a circle and two parallel tangents to the circle? (AHSME
1969)

329. Construct a 30° angle.

330. How did Bob manage to fill exactly 9 liters of water into his 12 liter rectangular box aquarium
using only one chalk mark on the edge of the aquarium as a measuring tool? (i.e. Bob has no way of
measuring volumes of water, he must use his geometric intuition.) (M&IQ 3)

331. Given a circle and its center, construct an equilateral triangle inscribed in the circle.

332. Consider triangle ABC with base AB fixed in length and position. As the vertex C moves on a
straight line, what is the locus of the centroid of the triangle? (AHSME 1962)

333. What is the locus of the midpoint of a line segment that is drawn from a given external point P
to a given circle with center O and radius r? (AHSME 1954)

334. In circle O, G is a moving point on diameter AB. AA’ is drawn perpendicular to AB and equal
to AG. BB’ is drawn perpendicular to AB, on the same side of diameter AB as AA’, and equal to BG.
Let O’ be the midpoint of A’B’. Then, as G moves from A to B, what is the locus of O’? (AHSME 1957)

335. Given three non-collinear points A, B, C, construct a circle with center C such that the tangents
from A and B to the circle are parallel. (Canada 1970)

336. Let AC be a given segment in the plane. What is the set of all points B in the plane not on line
AC such that ZABC > /BAC? (Mandelbrot #2)

337. Point A is on circle T, point G is inside this circle. Construct points B and C on T such that G is
the centroid of AABC. (M&IQ 1992)

§\ 338. Prove that the locus of all points which have the same power with respect to two given circles is
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a straight line. Remember that the power of a point P with respect to a circle O is found by drawing
a line through P intersecting circle O at X and Y. The power of point P is then (PX)(PY).

339. In any triangle there is a point X which is the point of intersection of three circles of equal radii, =
each of which is internally tangent to two sides of a given triangle. Describe a method by which X
may be constructed (by ruler and compass alone!). (USAMTS 2)

340. Let A, B be adjacent vertices of a regular n-gon (n > 5) in the plane having center O. A triangle L
XYZ, which is congruent to and initially coincides with OAB, moves rigidly in the plane in such a

way that Y and Z each trace out the whole boundary of the polygon, X remaining inside the polygorn.
Find the locus of X. (IMO 1986)

~
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——the BIG PICTURE ‘

Constructions were a special fascination for the ancient Greeks. Pursuing solutions of
construction problems led them to much of the geometry they discovered, and they were very
successful in solving those constructions.

It was thus all the more galling not to be able to achieve certain seemingly simple construc-
tions. Three problems particularly remained out of reach. One: givena cube, construct another
cube with twice the volume, or doubling the cube. Two: given a circle, construct a square
with the same area, or squaring the circle. Three: given any angle, trisect it, or trisecting the
angle.

The Greeks had good reason to think these problems were solvable, because all follow in
an obvious manner from very simple constructions. For example, doubling a square is quite
easy: if the square has side s, take the diagonal (length V25) as the side of a new square with
area 2s. Similarly, bisecting an angle is a simple task, as is triangling a square.

However, no Greek was able to solve any of the problems, nor was anyone else up to the
1800’s. At that time, all three constructions were shown to be impossible. How? Pierre
Wantzel, a French civil engineer, showed in 1837 that given a reference segment of length 1, a
length is constructible if and only if it is the root of an unfactorable rational polynomial whose
degree is a power of 2. Thus V2, the side of a doubled square, is constructible since it is a
root of x2 = 2, with degree 2. On the other hand /2, the side of a doubled cube, cannot be
constructed since it is a root of x> = 2, of degree 3.

If a general angle can be trisected, then a 60° angle can be trisected. Trisecting such an angle
gives a 20° angle, which can then be made to give a segment of length cos 20°, by creating a
right triangle with hypotenuse 1 and one angle 20°. Doubling this segment, a trivial operation,
would then yield a segment of length 2 cos 20°. However, this length is not constructible since
it satisfies the unfactorable equation x> —3x -1 =0, of degree 3. (Prove this with basic trig
operations.) Thus a 60° angle can’t be trisected, so a general angle certainly can't either (though
certain special angles, like 90°, can).

For the circle-squaring, we would need a square with side y/r, assuming the radius of
the circle was 1. The number /7t was later shown to be transcendental, meaning it satisfies
no polynomial with rational coefficients. Thus y7 certainly can't satisfy a polynomial with
rational coefficients whose degree is a power of 2, so the circle can’t be squared. The three
famous Greek problems all turned out to have no solution.

Chapter 21 Collinearity and Concurrency page 233

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

Chapter 21

Collinearity and Concurrency

21.1 Three Points and a Line

A How many points do we need to draw a line? Easy, two. What if we 1:1ave
three points? How can we tell if all three are on the same line or not? Sometimes
it’s very easy; for example, the points A, B, and C in the diagram at l.eft are clearly
not on the same line. However, in some cases it is not so clear. Points D, E, and
De F may be collinear, meaning all on the same line, but they may not. Justas 1.414
is not quite V2, “they look collinear” is not the same “they are collinear.” In this
B section we examine techniques to prove three points are collinear.

There ari many ways to prove that three points are collinear. We'll start with A\

a method we mentioned in Volume 1. On shown segment AC, AB + BC = AC B
if and only if point B is on segment AC. This method is clearly most useful for 2

problems involving lengths.

EXERCISE 21-1 Prove that point B is on segment AC if and only if AB + BC = AC.

D Another collinearity method borrowed from the very basics of geometry is the

3 fact that a straight angle has a measure of 180°. In the diagram, point B is on AC if
h and only if
B LABD + (DBC = 180°.

C
We don’t have to split this into just two angles; we could use point E as well, for which we need

LABD + (DBE + (EBC = 180°

to ensure collinearity. Despite its simplicity, this method is very useful.

EXAMPLE 21-1 Given two lines / and m which are tangent to circle O at X and Y, prove that O, X,
and Y are collinear if and only if [ || m.

< 233 »
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A_J X ! Solution: Points X, Y, and O are collinear if and only if £ZXOY = 180°.
Suppose I and m are not parallel and intersect at some point Z. Then ZXOY

2 is a quadrilateral whose interior angles must have sum 360°. Since ZOXZ =

Bj Y ™ /0YZ = 90°, we must have £XOY + £XZY = 180°. The condition /XZY # 0°

implies £XOY < 180°, 50 X, O, and Y cannot be on the same line if l and m are
not parallel. If / and m are parallel, draw segment AB as shown. Adding the angles of pentagon
ABYOX and setting the sum equal to 540°, we find £YOX = 180°, so that Y, O, and X are collinear.

In this problem, the result is fairly obvious; however, in many, and perhaps most, the result will
not be so obvious and you will have to make very accurate diagrams to convince yourself that it is
indeed true. And you'll need even more accurate proofs to convince everyone else!

<D < EXERCISE 21-2 Given line AC and point B on the line, show that points
D, E, and Bin the diagram are collinear if and only if Z/DBA = (EBC. This A E
is yet another simple result borrowed from basic geometry: the notion D~>B<‘C
that vertical angles are equal. Can it also be used to prove collinearity?
EXAMPLE 21-2 Consider point P on the circumcircle of AABC. Let points D, E, and F be the feet
of the perpendicular segments drawn from P to AB, AC, and BC, respectively (where the sides are

extended if necessary). Prove that D, E, and F are collinear. The line through these points is called
the Simson line of point P with respect to AABC.

p D Proof: We will prove that D, E, and F are collinear by showing that ZDEA =
A (FEC and then using the result of the prior exercise. First, since P is on the
circumcircle of AABC,

LAPC = 180° — /B.

Look closely at quadrilaterals ADPE, PFBD, and PEFC. All three quadrilaterals

are cyclic, the first two because they have opposite angles which sum to 180° and
the last because .PEC = ¢/PFC. Remember, lots of perpendicular lines usually means lots of cyclic
quadrilaterals! From quadrilateral PDBF,

(DPF =180° — /B = LAPC.

C

Removing the shared angle ZAPF from these two equal angles leaves /FPC = LAPD. From quadri-
laterals ADPE and EPCF, we find

LFEC = (FPC = tAPD = LAED,

from which we deduce that D, E, and F are collinear. Challenge: can you prove that the feet of the
altitudes from P to the sides of AABC are collinear only if P is on the circumcircle of AABC?

The next two techniques for proving collinearity involve slightly more advanced methods. The
first method relies upon the use of vectors and the second was brought to us by Menelaus of
Alexandria, who used it well over 1800 years ago.

The use of vectors in proving collinearity is very simple, so if you understand vectors, you can
easily add this to your arsenal. Choose an arbitrary origin O. Let the vectors from O to the points X,
Y, and Z be ¥, i/, and Z, respectively. If  — ¥ and Z - ¥ are in the same direction, then X, Y and Z are
collinear. (Why?)
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EXERCISE 21-3 How can we tell if / — ¥ and Z — ¥ are in the same direction?
EXERCISE 21-4 What happens if we choose X to be the origin? Does this simplify our problem? = Q>

Now we have reached Menelaus’s Theorem, which states that if X,

Y, and Z on the sides BC, CA, and AB (extended if necessary) of AABC
are collinear, then

AZ BX CY _

BZ CX AY
To prove this, we note that there is a product of ratios. The ratios suggest
similar triangles, so we draw the altitudes from the vertices of AABC to line XY, forming three pairs

of similar triangles: AADY ~ ACFY, AADZ ~ ABEZ, and ABEX ~ ACFX. Hence, we have

CY CF AZ _AD BX BE

AY AD’ BZ BE' ™ X CF
Multiplying these gives the desired relation. To prove the converse, that the relation in the theorem
implies that X, Y, and Z are collinear, we introduce Isaac Newton’s concept of directed segments. In
using directed segments ratios of segments on the same line are given a sign, positive or negative,
depending on whether or not the segments ‘point’ in the same direction. For example, AB/ZB is
consigesred positive since AB and ZB are in the same direction while AB /BZ is negative because AB

and BZ are in opposite directions. (Don’t get too wrapped up in the notion of directed segments.
We’ll only use it for this proof.)

EXERCISE 21-5 Some sources quote Menelaus’s Theorem using the expression ‘
L
ZB XC YA 7

How can this be?

Moving on to our proof, we will show that YZ and BC intersect at the point X which satisfies
Menelaus’s Theorem. Let this intersection point be X', where X is a point on BC that, along with Y
and Z on AC and AB respectively, satisfies

BX CY AZ _
CX AY Bz
Since Y and Z are on AC and AB, and X’ is on both YZ and BC, we also have

BX' CY AZ _,
CX’ AY BZ

Combining these we find

BX BX'

X X
If these ratios both equal 1, then we are done, since the above equality will then imply that X and X’
are both the midpoint of BC. If the constant ratio is not 1, then we have another problem.
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EXERCISE 21-6 Ignoring the notion of directed segments, prove that if ¢ # 1 and ¢ > 0 then there
are two points X’ on BC such that BX'/CX’ =c.

EXERCISE 21-7 Now let’s use directed segments. Prove that there is only one point X’ such that
BX'/CX’ = ¢, where c is any real number besides 1.

Applying the previous exercises to BX/CX = BX’/CX’, we deduce that X and X’ must be the
same point. Thus, if X, Y, and Z satisfy Menelaus’s Theorem, then they are collinear.

This converse is a useful tool in proving collinearity. Problems involving lengths, ratios (similar
triangles or power of a point), and diagrams which are similar to the one on page 235 (this is often
the biggest tip-off) are excellent candidates for Menelaus’s Theorem.

EXAMPLE 21-3 Let I be the intersection of angle bisectors BY and CZ and let X be the foot of the

angle bisector of ZA. Use Menelaus’s Theorem and the Angle Bisector Theorem to prove that 4, I,
and X are collinear.

c Proof: Although we discussed a much less complicated way to prove this
X fact in Volume I, this is an excellent exercise in the use of Menelaus’s Theorem.
The diagram shown is very suggestive. To use Menelaus, we must show that
A Z B CX BA ZI _

e =],

where A, I, and X are the points on the sides of AZBC. From the Angle Bisector Theorem, we have
CX/BX = AC/AB (since X is the foot of the angle bisector from A) and ZI/CI = BZ/BC (since BI
bisects ZCBZ of ABZC). Hence

........ 1’
where this last equality is a result of the Angle Bisector Theorem applied to bisector CZ, from which
AC/BC = AZ/BZ. Thus A, I, and X are collinear.

EXERCISE 21-8 Why can’t we use ZI/CI = AZ/AC from the Angle Bisector Theorem applied to
bisector Al of triangle ACZ as a step in the last example?

=

21.2 Three Lines and a Point

Any group of three or more lines which pass through the same point are called concurrent. Some
important examples of concurrent lines were discussed in Volume 1 when we introduced the angle
bisectors, the perpendicular bisectors, the medians, and the altitudes of a triangle. In showing the
concurrency of some of these, we used a couple very basic techniques which we’ll now quickly
review.

In working with angle bisectors and perpendicular bisectors, we used the most elementary
technique: we showed that due to the properties of the circumcenter (its being equidistant from the
three vertices), it must be on each of the three perpendicular bisectors. We showed a similar proof
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for the angle bisectors. For the medians, we used analytic geometry. This approach is usually very
algebraic and should be avoided if possible. In this section we’ll develop a technique similar to
Menelaus’s Theorem that will more easily prove that the medians are concurrent.

First, however, we’'ll look at using our collinearity techniques to prove concurrency. Suppose we
wish to show that lines AB, CD, and EF are concurrent. Rather than viewing this as a concurrency
problem, we can let I be the intersection of CD and EF and prove that A, B, and I are collinear. Hence,
all three lines pass through I. Once we've changed our concurrency problem to a collinearity one,
we can apply all of the techniques from the previous section.

EXAMPLE 214 Prove that the altitudes of a triangle are concurrent.

Proof: Let H be the intersection of altitudes CZ and BY. Connect A to A
H and draw the altitude from H to X. We wish to show that A, H, and X
are collinear, so that AX is a straight line through H perpendicular to BC. Y
We will do this by showing that £CAH = 90° — £ACX, then setting the sum
of the interior angles of quadrilateral AHXC equal to 360°, thus finding that
LAHX = 180°. First note that ZYBC = 90° — ZACB. Now we need to show C B
that ZCAX = £YBC. Lots of perpendicular lines means cyclic quadrilaterals!
Since £CYB = £CZB, quadrilateral YZBC is cyclic, so

LCZY = LYBC.
Since LAYB + LAZC = 180°, AYHZ is cyclic and
(CAH = (YAH = (HZY = (CZY = LYBC =90° — LACX.

As we mentioned before, we can now set the sum of the interior angles of quadrilateral AHXC equal
to 360° to determine that ZAHX = 180°. Thus, the altitudes of any triangle are concurrent.

EXERCISE 21-9 In the previous problem, we went to seemingly great lengths to prove ZHAC =
90° — LACX. Why can’t we just argue that from right triangle AXC, ¢HAC = 90° - LACX?

\l/

EXERCISE 21-10 Use one of our collinearity methods to prove that the medians of a triangle are
concurrent.

A We’ve saved the best for last; we are now ready for Ceva’s Theorem. The
importance of this theorem is reflected in the fact that lines from a vertex of
y a triangle to the opposite side of the triangle are called cevians in honor of
Z Giovanni Ceva, who first proved the theorem. The theorem, which closely
/A resembles Menelaus’s Theorem, states that if cevians AX, BY, and CZ of AABC
B X ¢ are concurrent, then
AZ BX CY_,
ZB XC YA
To prove Ceva’s Theorem, we use a couple of concepts we learned in Volume 1. First, the ratio of

the bases of two triangles with equal altitudes equals the ratio of the areas of the triangles. Second,
ifa/b = c/d, thena/b = c/d = (a—c)/(b - d). (If these are new to you, prove them before proceeding.)
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Now we interpret one of the ratios in terms of areas:

AZ _ |ACZ] _ [ZAP] _ [ACZ]-[ZAP] _ [APC]
ZB ~ [BCZ] ~ [ZBP) ~ [BCZ]-[ZBP] ~ [BPC]’

Similarly, we determine that

BX _ [BAP] CY _ [BPC]

XC ~[apc] ™ ya T [BapI

Multiplying these three relations gives the desired result and completes the proof of Ceva’s Theorem.

The most useful aspect of Ceva’s Theorem is its converse, which states that if cevians AX, BY,
and CZ satisfy

it

then they are concurrent.

EXERCISE 21-11 Prove the converse of Ceva’s Theorem using exactly the same technique we used
to prove Menelaus’s Theorem.

EXERCISE 21-12  Why do you think some sources quote Menelaus’s Theorem as we showed in
Exercise 21-5?

@ < EXAMPLE 21-5 Prove that AD, BE, and CF are concurrent if and only
if

(sin @)(sin d)(sin €) = (sin B)(sin O)(sin ¢),

where all angles are as measured in the diagram.

Proof: Seeing sines, we think to use the law of sines. Seeing con-
currency and products of three quantities, we think of Ceva’s Theo-
rem. Hence, we use the law of sines to relate the angles in the diagram to the lengths which
appear in Ceva’s Theorem. Applying the law of sines to AADB gives sina/BD = sin B/AD, so that
sina = (sin B)(BD/AD). Doing the same for the other 5 angles in our desired equation, the equation

BESEniES BDsinB ECsinC AFsinA _ AEsinA BFsinB CDsinC
AD BE CF =~ BE CF AD -
Cancelling like crazy and dividing by (AE)(BF)(CD), we have
BD EC AF _

CD -AE BF '

so we have shown that the expression in Ceva’s Theorem is equivalent to our expression in sines in
the given problem. Hence

(sina)(sin 6)(sin €) = (sin B)(sin 6)(sin ¢)

is a necessary and sufficient condition for concurrency. We'll call this the sine form or the angle form
of Ceva’s Theorem.

EXAMPLE 21-6 Prove that the altitudes of any triangle are concurrent.
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A Proof: From right triangle ACX, CX = ACcosC. If we do the same for
each of the other 5 segments which appear in Ceva’s Theorem, we find
¥
Z AZ BX CY ACcosA ABcosB BCcosC _
ZB XC YA BCcosB ACcosC ABcosA '
c X B so by Ceva’s Theorem, the altitudes must be concurrent. The point of con-

currency, the orthocenter, is usually called H as in the diagram.

EXERCISE 21-13 Use Ceva’s Theorem to show that the medians of any triangle are concurrent. Do
the same for the angle bisectors.

Ceva's Theorem is an extremely useful technique to prove concurrency. It is obviously most
useful in problems involving triangles, so whenever you have a concurrency problem involving
cevians, try using Ceva’s Theorem and the many tools you know to evaluate ratios of lengths
(trigonometry, similar triangles, the Angle Bisector Theorem, and so on). Like Menelaus’s Theorem,
it’s pretty obvious when to use Ceva; however, it’s sometimes challenging to show that the product
of the ratios is unity.

Problems to Solve for Chapter 21

341. Suppose that in the diagram, a = 6, 8 = ¢, and 6 = ¢. Prove that in
this case AD, BE, and CF are the altitudes of AABC and use the sine form
of Ceva’s Theorem to show that the altitudes are concurrent.

D
c 342. In triangle ABC, lines CE and DA are drawn so that
CD_3 . AE_3
D DB 1 EB 2
A E B Let r = CP/PE, where P is the intersection point of CE and AD. Find r.

(AHSME 1963)

343. Let points D, E, and F be on sides BC, AC, and AB, respectively. Let point D’ be on BC such that
D’ is on the line formed by reflecting line AD through the angle bisector of /A, and similarly define
BE’ and CF'. Prove that if AD, BE, and CF are concurrent, then so are the lines AD’, BE’, and CF’.
(Mandelbrot #2)

344. Let CH be the altitude in the acute triangle ABC. The points X, Z, &

and Y lie on the lines CA, CH, and CB, respectively, in such a manner that A i : B

AX = AC, BY = BC, and HZ = HC. Prove that X, Y, and Z are collinear. H

(M&IQ 1992) X L Y

345. Point D is chosen on side BC of AABC such that the incircles of AACD and AABD are tangent at
G. (Mandelbrot #1)
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i. Let line I be the angle bisector of Z/ABC, line m be the angle A
bisector of ZACB, and line 1 be the perpendicular to BC at point D.
Prove that lines /, m, and n are concurrent.

ii. In AABC, suppose that points H and I are defined on segments G
AC and AB in the same manner as D was defined on BC above. Prove B
that the lines AD, BH, and CI are concurrent. D

346. Prove that the lines through A and the incenter of AABC, through B and the circumcen-
ter of AABC, and through C and the orthocenter of AABC are concurrent if and only if cos?A =
(cos B)(cos C). (Mandelbrot #2)

347. Prove that the orthocenter, the centroid, and the circumcenter of any triangle are collinear. This
line is called the Euler line of the triangle. Prove also that the distance from the centroid to the
orthocenter is twice its distance from the circumcenter.

348. Three circles are drawn which intersect pairwise as shown. Prove that AD, B

BE, and CF are concurrent. a
‘5’\ 349. Given a triangle ABC and external points X, Y, and Z such that ZBAZ = LCAY, 3 ". C

(/CBX = (ABZ, and LACY = /BCX, prove that AX, BY, and CZ are concurrent. (IMO

1985)
‘5\ 350. The convex hexagon ABCDEF is such that angles ABF, BAC, ECD, BDC, A

AEF, and EFD all have equal measure. Prove that sides AF, DE, and BC have

equal length. (MOP) F B

Chapter 22 Geometry Tidbits page 241
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Chapter 22

Geometry Tidbits

This chapter contains several advanced concepts in geometry problem solving. Rather than put little S\
needles all over the chapter, we warn you now that most of this chapter is quite challenging.

22.1 Projections

In Volume 1 we discussed distortions, in which we stretched a figure in A
one dimension. We found that a distortion doesn’t preserve length or area,
but it does preserve ratios of lengths (in the same direction) and areas. For B D C

example, if triangle ABC is distorted to make AB’C’ as shown, we don’t have
[ABC] = [AB’C’]; however, [ABC]/[ABD] = [AB'C’]/[AB’D’].

B’ (o4
D’

A projection is very similar to a distortion; in a projection, we map
a figure in one plane into a figure in another plane. In the simplest
type of projection, we project AABC in plane X onto ADEF in plane Y
by pretending that there is a large ‘sun’ directly above the planes such
that ADEF is the ‘shadow’ of AABC. Thus, AD is perpendicular to plane
Y, as are CF and BE. Because of these perpendicularities, this type
of projection is called an orthogonal projection. To better understand
orthogonal projections, draw a triangle on a clear piece of plastic or glass
F Y| with a thick marker. Go outside when the sun is overhead and see what
E W kind of shadows the triangle makes as you move it around. You should
notice that the results of an orthogonal projection are exactly the same
as a distortion. '

As with distortions, orthogonal projections do not preserve lengths but they do preserve ratios
of lengths and ratios of areas. For example, in our figure, BG/GC = EH/HF and [ABG]/[AGC] =
[DEH]/[DHEF]. This preservation of ratios of lengths can be seen by first raising plane Y until point
B coincides with point E. The similar triangles BGH and BCF will then give the desired result.

EXERCISE 22-1 Note in the diagram that the lengths whose ratio is preserved are lengths of %O>
segments with the same orientation. Construct an example to show that if two coplanar segments
do not have the same orientation, then their projections do not necessarily have the same ratio as

the original segments.

4 241 »
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EXERCISE 22-2 Must we make similar orientation restrictions for the ratio of areas?

Now the important question: what good are orthogonal projections? The answer to this is the
preservation of ratios. Using this property, we can project complicated figures into simple ones to
solve problems.

EXAMPLE 22-1 Prove that the area of an ellipse with major axis and minor axis of lengths 22 and
2b, respectively, is abm.

Proof: We do this by projecting the ellipse into a figure whose area we can find, namely a
circle with diameter 2b. To take advantage of the constant ratio of areas, we must have some other
relevant figure projected along with the ellipse. For this example, we consider the triangle formed
by the endpoints of the major axis and one endpoint of the minor axis. Let this triangle be ABC and
its projection be A’B’C’. Hence we have [ABC] = ab and [A’B’C’] = b*. (Why?) Since orthogonal
projections preserve ratio of areas, we have

Area of ellipse _ Area of circle
[ABC] ~  [A'B'C]

Since the area of the circle is b*m, we quickly find that the area of the ellipse is abrt.

EXAMPLE 22-2 Find the maximum value for the area of a triangle inscribed in an ellipse with
minor axis 1 and major axis 100. (Mandelbrot #2)

Solution: Dealing with inscribed figures in an ellipse can be pretty tricky, so we perform an
orthogonal projection to map the ellipse to a circle with diameter 1. Let ABC be the triangle of max-
imum area inscribed in the circle and ADEF be the triangle inscribed in the ellipse whose projection
is AABC. Since the ratio of areas is preserved, ADEF must be the largest possible triangle inscribed
in the ellipse. Now our problem is finding the maximum area of a triangle inscribed in a circle of
diameter 1. This is just an equilateral triangle, which has area 3 V3/16. From the preservation of

ratios, we have
[ABC] _ [DEF]

Area of circle ~ Area of ellipse

Thus,
(3v3/16)[(1/2)(100/2)n] _ 75vY3

[DEF] = n/4 r

EXERCISE 22-3 Could we have used an orthogonal projection to project the ellipse in the previous
exercise into a circle with radius 100 rather than radius 1?

Orthogonal projections are generally most useful when we can project odd shapes, such as an
ellipse, into regular ones, like a circle. As you will see in one of the problems at the end of the
chapter, orthogonal projections can also be used to attack three-dimensional problems by projecting
planar parts of the figure in the problem.
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Orthogonal projections are not the only projections possible. SuPpose
that rather than a large sun shining directly above our plane, we have just a
single point of light. The result, called a central projection, is shown in the
figure. Point C is the center of projection, or the point of light. The images
of the projections of A and B are A’ and B’, respectively.

Al

If instead of light emanating from a point we take consider parallel beams of
light, we get a parallel projection. Note that orthogonal projections are parallel
projections in which the projection rays (lines AA’ and BB’) are perpendicular
to the plane of the image, i.e. AA is perpendicular to plane Y.

EXAMPLE 22-3 In parallel projections, ratios of lengths and areas are preserved, just as in orthpgonal
projections. This is proven in the same manner as we did with orthogonal projections, using the
parallel rays and similar triangles.

EXERCISE 22-4 Construct an example to show that central projections do not preserve ratios of

lengths.

In general, the most useful projection is the orthogonal projection; however, make sure you
understand the other types of projection as well.

22.2 Inversion

Inversion with respect to a circle is one of the most bizarre useful geometric transformations. Let
the circle about which we are inverting have center O and radius R. The image of a point P is the
point P’ on ray OP such that OP - OP’ = R2. To get a handle on what this does, let’s investigate what
happens to a few particular points.
°A Ble First consider point C on the circle. Since OC = R, OC’ = R?/OC = R as well.
Hence, the image of C is itself. Now try point A, outside the circle. Since OA > R,
OA’ = R?/OA < R. Thus, A’ is inside the circle on ray OA. Similarly, we can show
C  that the image of B, a point inside the circle, is outside the circle. What about the
image of O? Since OO = 0, the image of O must be infinitely far away from O. We
call this image the point at infinity. Similarly, the image of the “point at infinity” is O.

EXERCISE 22-5 Investigate the “point at infinity” concept. Let the radius be 10 and find the length
of OA’ if OA = 1, OA = 0.1, etc., and if OA = 100, OA = 1000, etc.
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A« Extending these basic examples, we see that the image of the circle we are

\ inverting about is the circle itself. By moving point A along the line through O

C and A in the diagram, we find that the image of any line through the origin is

that line itself. Let’s investigate the line through points A and C on the circle.

Points on chord AC map to AC outside circle O. Points on the line past C map

to OC and those on the line past A map to OA. We find (though we haven't

proven this) that the inverse of a line which does not pass through the center of

a circle is a circle which passes through the center of inversion. Going backwards, the image of a

circle through the center of inversion is a line. Similarly, we can find that the image of any circle not
passing through the center of inversion is also a circle.

EXAMPLE 22-4 Prove that the image of a line intersecting the circle of inversion but not passing
through the center is a circle and not some other strange curve.

Proof: We'll first deal with the portion of the image outside circle O. Let A Y
point X be some point on chord AC with image Y. We wish to show that point Y é\
lies on the circle which passes through A, C, and O (since these three points are \ % c
clearly on the image). By the definition of inversion, OY/OA = OA/OX. Thus by
SAS similarity, AXOA ~ AAQY, and LCAO = LAYO. Since AOAC is isosceles,
we have ZACO = £CAO = LAYO; hence, YAOC is a cyclic quadrilateral. From
this, we find that any point on chord AC has an image on the circumcircle of
AACO.

Once again using the definition of inversion, for points outside the circle A
we have OX/OC = OC/OY and OA/OX = OY/OA. From this we see that \

C
AOCX ~ AOYC and AOAX ~ AOYA. P o

These relations give us
LOCX = LOYC = LOAX,

so AOCX is a cyclic quadrilateral. Thus, we have shown that the image of every point on line AC is
on the circumcircle of AOAC. To complete the proof, we must go backward to show that the image
of every point on the circle is on line AC, so that by inverting line AC, we get every point on the
circumcircle of AOAC rather than just a portion of the circle. We haven’t shown that O is on the
image, but this is trivial because the center of inversion is on the image of any line. (Why?)

Read through this proof closely; it shows why inversion works. It should also convince you
that cyclic quadrilaterals are an excellent problem solving aid. Don'’t get too intimidated by this
proof; using inversion generally isn’t this tough. Furthermore, as you've seen throughout the ART
of PROBLEM SOLVING many of the tools which we use “easily’ have very complicated proofs.

EXERCISE 22-6 Given a point P outside circle O, construct the point which is the inversion of point
P with respect to O. '

Inversion is a pretty complex process; what can we use it for? One answer to that is shown in the
proof above: we can convert cyclic quadrilateral problems to collinearity problems. For example, in
the proof above, proving that three points are collinear is equivalent to proving that their images are
all on the same circle with the center of inversion. Thus, if we are asked to show that three points are
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collinear, we can instead perform an inversion with respect to some circle and show that the image
points and the center of inversion are concyclic. Clearly, such a method is only useful in problems
involving circles. Inversion problems are quite rare, so don’t dive into inversion until after you've
tried other approaches. However, playing with inversion is fun, so take the time to invert all sorts
of figures and see what results!

22.3 Homothecy

In Volume 1 we discussed dilations and stated that a figure and its image under dilation are ho-

mothetic, meaning that all lines through corresponding points of the two figures share a common
point.

In the figure, triangles ABC and DEF are homothetic, and
O is the center of homothecy. Note that line MN connecting
midpoints of corresponding sides of the two triangles also passes
through the center of homothecy. Furthermore, since one figure
is a dilation of the other, we have

OC_OM _OB_OA _CA _BC_AB

OF ON OE OD FD EF DE
These are the most important properties of homothecy: that lines
through corresponding points in a figure and its image are concurrent, and that the above ratios are
all the same.

Using homothetic figures is generally just like using similar figures. Recall from Volume 1 that
any two similar figures with the same orientation are homothetic. The advantage of homothecy
over simple similarity is the center of homothecy: it is easy to find the ratio of the two figures
(for example, just find OC/OF above) and the concurrency of lines through corresponding parts of
homothetic figures is often useful.

Always keep an eye open for homothetic figures; they are generally pretty easy to spot. Ho-
mothecy is most common in problems involving centroids, equilateral triangles, internally tangent
circles, and other problems in which the center of homothecy is some special point.

EXERCISE 22-7 Are two internally tangent circles homothetic? If so, whatis the center of homothecy?

EXAMPLE 22-5 An equilateral triangle has sides of length 18. Three 60° arcs of radius 6 and with
centers at the vertices are drawn inside the triangle. Find the area of the triangle formed by joining
midpoints of these three arcs. (MA© 1990)

Solution: The resulting triangle is homothetic to the original triangle, and the centroid of the orig-
inal triangle is the center of homothecy. (Why?) To find the ratio of the two triangles, we note that the
distance from the centroid of the original triangle to a vertex is (2/3)(altitude) = (2/3)(9 V3) = 6 V3.
The vertices of the smaller triangle are 6 units closer to the center, so are 6 V3 — 6 away. Hence,
the triangles’ side lengths have ratio 6 V3/(6 V3 — 6) = (3 + V3)/2, and thus their areas have ratio
[(3 + V3)/2]? = (6 + 3 V3)/2. Finally, the smaller triangle has area

(18)2 V3/4

=108V3 - 162.
(6 +3V3)/2 A
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Notice the advantage of using homothecy; we don’t have to find the ratio of a pair of sides to find
the ratio of the triangles’ corresponding lengths.

EXERCISE 22-8 In AABC, D is the midpoint of BC, E is the midpoint of AC, and F is the midpoint
AB. Show that AABC and ADEF are homothetic. What is the center of homothecy?

N

<D

224 Geometric Continuity

Given a region with area K and a line I, show that we can find a line parallel to I which
divides the region into two regions of area K/2.

Start from position 1, where the line is entirely below the figure. Con-
sider the area in the region below the line. Initially, this area is 0. As we
3 move the line steadily up from position 1 to position 3, this area ranges

continuously from 0 to K. Hence, at some point, it must equal K/2.
2 This is all we must do to solve geometric continuity problems: define
some continuous function in terms of the given figures (such as the area
1 below the line above), show that this function varies over a range which
includes the desired value (the range 0 to K above), and finally conclude
that the desired value can be attained because the function is continuous.

EXAMPLE 22-6 Given a region of area A and a point P, show that there is some line through P
which divides the region into two equal areas.

Proof: Draw a line through P. By rotating this line about P, we can
form any other line through P. Now we must find some function in terms of q
this line which continuously covers some range that includes a case of a line
bisecting the area of the region. The only such function which seems plausible b Q
is choosing the area on one side of the line. Thus, we choose some point Q on the line and consider
the region’s area to the left of PQ (standing at P and looking at Q). Let the initial configuration be
such that this area is X as shown. Consider what happens as we rotate the line 180°. The line rotates
to itself, but with Q on the other side of P. Hence, the area to the left of PQ isnow Y = A — X. In

a 180° rotation, the area to the left of PQ ranges continuously from X to A — X, so it must at some
point be equal to A/2 (since A/2 always lies in this range).

One point we have breezed over in this discussion is proving that the areas really range contin-
uously rather than jumping from one value to the next. While it is intuitively obvious in the first
example that by gradually moving the line from below the region to above the region continuously
changes the area below the line, we must find a way to mathematically prove this. For this proof, we
must show that for a given line which cuts the region into two pieces, we can increase or decrease
the area below the line by any small amount, no matter how small, through sliding the line up or
down.
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Let € be some very small number. Let the area in the region below §\

L e
the line CD shown be X. We wish to show that no matter how small € is,
s m we can find another line parallel to the first which leaves less than X + €

S 4 of the region’s area below. Since the region is finite, we can draw lines

c Q R I 'and m perpendicular to CD such that the entire region lies between [
and m. Points C and D are the intersections of the original line with these
new lines. Let CD = y. We choose A and B on lines ! and m such that
AD = BC = €/y. Hence, the area of the region below line AB is less than X + [ABCD] = X +¢€, as
desired. Hence, for any discrete area difference, no matter how small, we can make a smaller change
of area; therefore, the area change as we slide the line across the region is continuous as claimed.
Try to understand the proof, why we need to do it, and why it shows that the area varies
continuously from 0 to K as we slide a line from below the region to above it. If you have trouble
understanding the details, move on and come back later. While the details aren’t trivial, they aren’t
as important as the other techniques this chapter offers.
It’s pretty obvious when these continuity arguments are called for; all these problems require

us to find the existence of some line or plane intersecting some continuous region (as opposed to a
smattering of points, which we’ll look at next section).

EXERCISE 22-9 Given a point P in a finite region I', show that we can draw 12 rays from P which
divide the region into 12 regions of equal area. '

22.5 Given a Finite Number of...

Once again, we introduce this topic with a problem.

Prove Sylvester’s Theorem, which states that given n distinct points in the plane (n > 2)
not all collinear there is some line that goes through exactly two of the points.

EXERCISE 22-10 Create a few sets of points to see why Sylvester’s Theorem seems true, but is not
obvious.

For any set of three points which are not collinear, we define a number « as the smallest distance
from one of the three points to the line through the other two. There are three such distances for
each set of three points (one for each point); a is the smallest of the three. Since there are finitely
many points, there are finitely many values for a; consider the three points for which «a is smallest.
Let the points be A, B, and C, such that the distance from A to BC is this minimum a. We will show
that the line containing B and C does not pass through any other of the # points.
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A Draw altitude AE of AABC. Since AE is the shortest altitude of AABC,

M\ point E must lie between B and C as shown. Note that the length of AIT: is

the aforementioned minimum a value. Suppose for the sake of contradiction

P £z " i i i lity, let D be to the
A that another point D lies on BC. Without loss of generality, :

/Xm\ left of E as in our diagram. We consider two cases: point D outs@e C a'nd

point D between B and C. For the former, we have the first diagra:r}, in which

& R & & CX < AE since CX is shorter than the altitude from E to AD, which in turn

is less than AE. (Prove it.) Thus, points A, C, and D have a smaller a value than the set {A, B,C},
which contradicts the fact that this latter set has the minimum a value. Hence, D cannot be among
the original 7 points. Similarly, if D is on segment BC we have DX < AE, which once again is a
contradiction. Hence, no point on line BC besides B and C can be among the original n points and
we have found a line through exactly 2 of the n points.

Problems like this are difficult, but if you ever come to a problem involving some ﬁn_ite number
of points about which you need to prove the existence of something special, try the showing tha.\t the
set of three points which form a triangle of maximum or minimum area, perimeter, Or even altitude
length (as we did with Sylvester’s Theorem) is the desired set.

EXERCISE 22-11 In proving Sylvester’s Theorem, we assumed the set of points is .ﬁnite. Why can't
we use an infinite set? Find a counterexample to the theorem if infinitely many points are allowed.

Problems to Solve for Chapter 22

Beware, not all of these problems require the concepts taught in this chapter; we’ve mixed in a few
toughies from other geometric subjects. Note that, by the standards of other chapters, many to most

of these problems deserve a needle.

351. Consider triangle ABC with medians AD, BE, and CF. If the area of AABC is 12, what is the
area of the triangle D’E’F’, where D', E’, and F’ are the reflections of D, E, and F through A, B, and
C respectively? (MA© 1991)

352. Given two parallel lines which do not pass through point O, describe the images of the lines
upon an inversion with respect to a circle with center O.

353. Show that for any quadrilateral inscribed in a circle of radius 1, the length of the shortest side is
less than or equal to V2. (Canada 1969)

354. The figure F is such that the projections of F on the non-parallel planes a and B are straight lines.
Is it true that F must be a straight line? (M&IQ 1992)

355, Let AABC be a right triangle of area 1. Let DEF be the points obtained by reflecting A, B, and C
respectively in their opposite sides. Find the area of DEF. (Canada 1989)

356. Prove that if the area of a quadrilateral is half the product of its diagonals, then the quadrilateral
is orthodiagonal. (M&IQ 1991)

357. Two circles are drawn which intersect at O. Suppose that the tangents to the circles at O are
perpendicular. Such circles are called orthogonal circles. Describe the images of the circles upon an
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inversion with respect to a circle centered at O.

358. Suppose that three circles are given in the plane in such a way that they divide the plane into 8
components. Let R be the region in the plane consisting of all points in at least 2 of the three circles.
The boundary of R consists of 6 arcs of circles. Prove that the sum of the degree measures of these
arcs is a constant, independent of the original three circles. (MOP)

359. Prove that the orthocenter cannot be the midpoint of two of the altitudes of a given triangle.
(M&IQ 1991)

360. Let A and B be two simple closed figures in the plane. Prove that there exists a line which
simultaneously bisects both the area of both figures. This is called the Pancake Theorem.

361. Let quadrilateral ABCD be circumscribed around a circle. Prove that the incircle of AABC is
tangent to the incircle of AACD. (M&IQ 1991)

362. Given 2n points in the plane, no three of which are collinear, prove that there exist at least n
different lines, each passing through two points in the set and dividing the remaining 2n — 2 points
in half (n — 1 points on each side). (Mandelbrot #3)

363. Two circles are internally tangent. A triangle is formed with one vertex on each
circle (not at the tangent point) and the third at the tangent point. Find the maximum
area of such a triangle if the circles’ radii are 1 and 3. (Mandelbrot #1)

364. Let S be a simple closed curve. Prove that there exists some line ! which
simultaneously bisects the length of curve S and bisects the area of the region enclosed by S.
(Mandelbrot #2)

365. Prove that if the altitude of isosceles trapezoid ABCD (AB || CD) is equal to %(AB + CD), then
ABCD is orthodiagonal. (M&IQ 1991)

366. Given any smooth convex figure, prove that it is possible to draw a square which contains the
entire figure and has all four sides tangent to the figure. (Mandelbrot #2)

367. A cylindrical hole of radius 1 is drilled along one of the long diagonals of a cube of side length
3. Find the area of one of the six congruent faces of the resulting solid. (Mandelbrot #3)

368. Given two orthogonal circles which intersect at A and B, we draw a third circle with center
A and radius AB. Let C and D be the points besides B where this third Clrcle meets the other two.
Prove that CD is a diameter of the third circle.

369. Find, with proof, the minimum number of equilateral triangles of side 1 Wthh are needed to
cover a square of side 1 entirely. (MOP)

370. The incircle of AABC touches the sides BC, CA, AB at the points D, E, F respectively. Let X, Y, ‘S\

Z be the midpoints of EF, FD, DE, respectively. Prove that the incenter of ABC, the circumcenter of
ABC, and the circumcenter of XYZ are collinear. (IMO 1986)

371. Given points A, B, and C, we draw lines through A, B, and C parallel to BC, AC, and AB
respectively. These three lines form a new triangle similar to AABC but twice as large which has A,
B, and C as the midpoints of its sides. We call this new triangle the first outer medial triangle. If
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we repeat this construction on the vertices of the new triangle we arrive at the second outer medial
triangle. (Mandelbrot #3)

i. Construct the first outer medial triangle of any triangle ABC.

' ii. Givenn > 3 points in the plane, no three of which are collinear, prove that one can find three
points whose first outer medial triangle contains all the remaining 7 —3 points in its interior or sides.

iii. Givenn > 3 points in the plane, no three of which are collinear, prove that one can find three
points whose second outer medial triangle contains none of the other points in its interior.

372. We are given a triangle ABC and three rectangles R;, Ry, Rz with sides parallel to two fixed
perpendicular directions and such that their union covers the sides AB, BC, and CA. That is, each
point on the perimeter of ABC is contained in or on at least one of the rectangles. Prove that all
points inside the triangle are also covered by the union of Ry, Ry, R3. (IMO 1985)

the ART of PROBLEM SOLVING: Volume 2 < 251

—_the BIG PICTURE

After Euclid presented his five basic axioms of geometry, many geometers felt uncomfortable
with one of them—the parallel postulate, which states that given a line / and a point P not on
I, there is exactly one line through P parallel to 1. Compared to “through any two points there
is exactly one line” or “all right angles are equal,” the parallel postulate is ugly, longwinded,

complex. Thus many hoped that the parallel postulate might turn out to be provable from the
other four axioms.

To attempt to prove the postulate, several mathematicians tried assuming the postulate to

be false, seeking a contradiction. Rather than finding a contradiction, though, they found an
entire new type of geometry.

In non-Euclidean geometry, the parallel postulate does not hold. The simplest type is
geometry on the surface of a sphere. Here the equivalent of a straight line is a great circle—an
equator. Any two equators intersect, so there is no such thing as parallel lines on the sphere.
Instead of exactly one parallel line through P, there are none. In another type of non-Euclidean
geometry, there are infinitely many parallels. This hyperbolic geometry is (obviously) less easy
to visualize, but is an equally good geometry in terms of producing interesting results.

As you might expect, strange things happen in non-Euclidean geometry. For example, in
spherical geometry the sum of the angles of a triangle is always greater than 180°, as you can
see if you try drawing a large triangle on a sphere.

Even though prominent mathematicians—Lobachevsky, Riemann, Gauss—studied non-
Euclidean geometry in the early 1800s, the subject was kept under wraps for many years,
not quite seen as serious. But it later led to many very serious things, not the least of which
are Einstein’s theory of general relativity, which maintains that our spacetime is curved and
non-Euclidean, and many M.C. Escher artworks, which tile the hyperbolic plane with frogs,
angels, and devils.

Chapter 23 Number Theory page 252
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Chapter 23

Number Theory

‘ WARNING: This chapter assumes a full competence with the modular arithmetic discussed in
Volume 1. Make sure you are quite comfortable with mods before you continue.

23.1 Divisibility

You may think that we must have exhausted the subject of divisibility in Volume 1. That is nearly
true, but there are a number of points which remain to be made. (Don’t be discouraged if you find
this section sticky, as our discussion is fairly subtle.)

First, though, a quick review. If a number a divides another number b, we write a|b; for instance,
6/12 and 17[1717. Showing alb is the same as showing b = ka for some integer k—do you see why?
The greatest common divisor or GCD of two integers a and b is the largest integer which divides
both, and is written (a,b). For instance, (18,12) = 6, (56,40) = 8, and (17,23) = 1. Two numbers
whose GCD is 1 share no common divisors, and are called relatively prime. If you aren’t familiar
with these concepts, try some more examples until you feel comfortable, or go through the relevant
sections of Volume 1.

Consider one number which divides the product of two others: albc. It should be intuitively clear
that a can be split into two parts such that one divides b and the other divides c. That is, we can find
two numbers a; and a; such that a1a; = 4, a1|b, and a;|c. For example, for 12|8 - 9, we have 12 = 4 - 3,
418, and 39.

If p is a prime, the only way to split it into two parts is as p - 1. Thus if p|bc, we always have either
plb or plc. )

Still another point can be made along these lines. Since albc, we have ka = bc for some k, and thus
k = be/a = (b/a1)(c/az) for some integers a; and a; such that a;|b and a;|c. Hence both b/ay and c/a,
are integers. Thus b/a;|bc/a since their quotient, c/ay, is an integer. However, since a; divides both a
and b, it divides the greatest common divisor (4, b). Thus b/(a, b)|b/ay, so b/(a, b)|bc/a for anya, b, and
o)

&

EXERCISE 23-1 In the last argument, we asserted that since a,|(a, b), b/(a, b)lb/ay. Why is this so?

<« 252 »
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Many divisibility-related facts can be understood by referring to the prime factorizations of the
numbers in question. For example, a fact we will use occasionally is that if we take two numbers
a and b and divide them by their greatest common divisor ¢ = (a,b), the resulting integers a/g and
b/g will be relatively prime. Why? We use contradiction. If some prime p divides both a/g and
b/g, then a/pg and b/pg are integers, so pg divides both a and b. But g is supposed to be the largest
number which divides both 2 and b, so this is impossible. Hence no prime divides botha/g and b/g,
so(a/g,b/g) =1.

EXAMPLE 23-1 Prove that if ab is a perfect square and (a, b) = 1, then both 2 and b must be perfect
squares.

Proof: Consider the prime factorization ab = pi'---pj*. If ab is a square, all the ¢; are even
and each term pj' is a square in its own right. (Do you see why?) Each prime in the factorization
divides either a or b but not both, since we have (a,b) = 1. Thus each term p{’ in the factorization
completely divides either a or b. Hence, a is the product of many terms p{’, each of which is a square;
since its a product of squares, a is itself a square. Similarly for b.

The arguments of this section may seem like more trouble than they’re worth, but much of both
this chapter and Chapter 24 rely on these and similar facts. You may want to go back through some
of the proofs again. Focus especially on how we use concepts of the greatest common divisor and
relatively prime integers; these simple ideas are at the core of all the number theory you’ll study.

23.2 Division in Congruences

In Volume 1, we made the point that division does not work in the obvious way with congruences.
That is, given a congruence like ad = bd (mod m), we can’t cancel the d to geta = b (mod m). Why not?
A simple counterexample: we have 2 = 20 (mod 6), but not 1 = 10 (mod 6). What has happened? [If
you don’t understand this example, you should go back and review the section on congruences in
Volume 1.]

To figure out what has happened, remember what it means for 2 and 20 to be congruent (mod
6). It means that they differ by some multiple of 6, say 69. When we halve the two numbers, their
difference will also be cut in half, to 3q. The numbers will still be congruent (mod 6) only if this
new difference is a multiple of 6. If g is odd, this won't be the case, and the division will fail. In
our specific case, the difference between 2 and 20 is 18; halving gives 9, which is not divisible by 6
anymore.

So can we say anything at all about division? Certainly. The difference 37 above may not
always be divisible by 6, but it is always divisible by 3. Thus while 22 = 2b(mod 6) does not yield
a = b(mod 6), it does yield a = b (mod 3).

Let’s look back at the general problem. The equation

ad = bd (mod m) (23.1)

means that ad and bd differ by mgq for some g. This means that a and b differ by mq/d, which must be
an integer since a and b are integers. Thus d|mgq. By the rules of the previous section, this means that

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

254 » CHAPTER 23. NUMBER THEORY

m/(m,d)mq/d. We thus have that a — b = mg/d is divisible by m/(m,d) (ora—b =0 (mod m/(m,d))),
and (23.1) hence becomes

a = b(mod m/(m, d)). (232)

This is the general division rule for congruences. Try a few examples to see how this division works.
Notice that ad = bd (mod m) implies a = b(mod m) if and only if (m,d) = 1, i.e. if m and d have no
common factors.

EXERCISE 23-2 Compare our 2 = 20 (mod 6) example to equation (23.2).

EXERCISE 23-3 Divide out the common factors in the following congruences.
i. 6a = 6b(mod 20)
ii. 23 =138 (mod 5)
iii. 12 = 30(mod 9)

EXAMPLE 23-2 A nice thing happens when the base of the congruence is a prime. We then have
ad = bd (mod p). We have two cases. First, d can be a multiple of p: d = kp. Then ad = akp = 0 and
bd = bkp = 0, and the congruence reduces to 0 = 0. Not too interesting.

In the other case, d is not a multiple of p so d and p have no common factors besides 1. Since p is
prime, this means that (4, p) = 1, so we can write

ad = bd (mod p) a=b(modp/(d,p)) a = b(modp).

Thus in congruences (mod p), p a prime, division works! Just make sure you don’t divide out any
multiples of p.

‘{ WARNING: It is an extremely common error to forget that division doesn’t work in the normal
way in congruences. Don’t make it. Always remember to divide the modulus m by the greatest
common divisor of m and the divided quantity d, as in equation (23.2), which you should study
carefully.

23.3 Solving Linear Congruences

The reason division is so important is that it allows us to solve linear congruences, expressions of
the form rx + s = t (mod m). Let’s look at the example

1233x + 45 = 9090 (mod 24).

First of all, we can subtract the 45 from both sides, since we found in Volume 1 that subtraction
always works in congruences. We then have

1233x = 9045 (mod 24).

The next step is to mod out both 1233 and 9045 by 24. This is crucial—because working with such
large numbers would be messy and confusing, we use the convenient fact that modding everything
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out will not change the result. Dividing each large number by 24 and taking only the remainder (do
this yourself), we find that 1233 = 9 (mod 24) and 9045 = 21 (mod 24). Our equation becomes

9x = 21 (mod 24).

We can immediately divide both sides by 3, the common factor of 9 and 21—but we also need to
divide the 24 by (24,3) = 3, as in Section 23.2. The equation is then

3x =7 (mod 8),

and we have only to get rid of the “3” in 3x to be finished. To do this, we add 8's to the right hand
side, since 8 = 0 (mod 8). We have

3x=7=15=23=31=--- (mod8),

and we can take our choice of where to stop. In this case, we'll stop at 15, writing 3x = 15(mod 8),
because we can then divide both sides by 3 (the 8 is unchanged because 3 and 8 are relatively prime)
to get the final answer of

x = 5(mod 8).

Thus the solutions to our congruence are ..., -11,-3,5,13,21, ..., or 5 + 8] for any integer j.

EXERCISE 23-4 Solve the congruences. (Watch out, some strange things happen!)
i. 1235x + 45 = 9090 (mod 24)
ii. 1235x + 45 = 9090 (mod 11)
iii. 1235x + 45 = 9087 (mod 11)
iv. 1232x + 45 = 9090 (mod 24)
EXAMPLE 23-3 The general solution to a linear congruence looks like x = a (mod m). This can also
be written as x = a + mj for any integer j. Such a representation allows us to solve more than one

congruence simultaneously. Consider two congruences: if one yields x = 5 + 6j (x = 5(mod 6)) and
the other x = 4 + 7k (x = 4(mod 7)), we write 5 + 6j = 4 + 7k, or

1+6j=7k = 7k = 1(mod 6),

since 7k is 1 more than a multiple of 6. Solving the resulting linear congruence yields k = 1 (mod 6),
so k = 1 + 6l for any integer . Thus x = 4 + 7k = 4+ 7(1 + 6]) = 11 + 42l for any integer I. As
usual for simultaneous expressions, simultaneous congruences may have no solution (for example,
x = 2(mod 4) and x = 1(mod 10)).

EXERCISE 23-5 Solve simultaneously the three congruences 3x = 4(mod7), 4x = 5(mod 8), and
5x = 6(mod9).

WARNING: Although the method of Example 23-3 is a nice, mechanical way to solve systems ‘{
of linear congruences, don’t let it blind you to more clever approaches. For example, the system
x = 4(mod5), x = 5(mod 6), x = 6 (mod 7) is most easily solved by noting that it forces x + 1 to be
divisible by 5, 6,and 7, so that x + 1 =567 - j = 210, and x = 210j — 1. Watch for these shortcuts.

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

256 » CHAPTER 23. NUMBER THEORY

234 Solving Quadratic Congruences

A quadratic congruence is of the form rx2 +sx+t = u (mod m). Unfortunately, this general form is too
difficult to do much with, so we'll ignore the sx term. We can then reduce to the form rx? = v (mod m),
withv=u—¢.

We can use the division rules just as we used them for linear congruences to get still simpler, to

the form x* = v’ (mod m’). Thus the problem is to find the square roots of v’ (mod m’), or numbers
whose squares are congruent to v’ (mod n’).

EXAMPLE 23-4 Not all numbers even have a square root. For example, suppose we are working
in (mod 6). The squares of all the numbers are 02 = 0,12 = 1,22 = 4,32 =9 = 3,4% = (-2)2 = 4,
and 52 = (-1)? = 1. (Note how we have simplified the arithmetic by using the facts that 4 = -2 and
5 = =1.) Thus 0 has the square root 0, 1 has the two square roots 1 and 5, 4 has the square roots 2
and 4, and 3 has the square root 3. However, 2 and 5 have no square roots at all, because there are
no numbers which, when squared, give 2 or 5 (mod 6).

EXAMPLE 23-5 In the previous example, why did we only consider the squares of the numbers
from 0 to 5?

Solution: Every number after 5 is congruent to some number from 0 to 5 mod 6. Since the
squares of congruent numbers are congruent, we need only compute the squares of 0 through 5
to analyze the squares of all integers mod 6. Note also the pattern of the nonzero squares in the
example: 1, 4, 3, 4, 1. The sequence is symmetric. This is not an accident. Since (1)? = (—u)?, we
have (u?) = (-u)? (mod 6). Noting that 5 = 1 (mod 6) and 4 = -2 (mod 6) explains the symmetry of
our squares.

A number which has a square root (mod m) is called a quadratic residue (mod m).

EXERCISE 23-6 Find all quadratic residues in mod 7, 8, and 9.

EXAMPLE 23-6 The most quadratic residues there can be (mod ) for an even integer n = 2m is
m + 1. This is because even if 02, 12, ... m? are all different, the rest of the squares will be copies of
these first m + 1 numbers: (m + 1)2 = (m - 1)%, (m + 2)2 = (m — 2)2, and so on. For example, since
2m = 0 (mod 2m), we can write

(m+1)*=m?+2m+1=m? - 2m+1= (m - 1)2 (mod 2m).

Write down the squares of 0, 1, 2, 3, 4, 5, and 6 (mod 6) to see this.

EXERCISE 23-7 What is the most quadratic residues there can be (mod #) for n = 2m + 1 an odd
integer?

&

EXAMPLE 23-7 Let p be a prime other than 2. If there are two numbers u and v such that
u? = v? (mod p), then u? — v = 0(mod p), so that u? - v? = (u — v)(u + v) is a multiple of p. Since p is
prime, this implies that either u — v is a multiple of p, so u = v (mod p), or u + v is a multiple of p, so
u = —v(modp).

Thus when we write down the quadratic residues 02,12, . ..., (p—1)?, there can be no duplications,

except that the last (p — 1)/2 are copies of the first (p — 1)/2 nonzero squares, much like described in
Example 23-6. In other words, an odd prime p always has the maximum (p + 1)/2 residues.
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On the other hand, a nonprime like 15 will not achieve the maximum: the squares of 0 through
14 evaluated mod 15 are

0,1,491,10,6,4,4,6,10,1,9, 4, 1.
There are only 6 residues—0, 1, 4, 6, 9, 10—rather than the maximum of (15 + 1)/2 = 8.
EXERCISE 23-8 Verify the assertions of the previous example for p = 11 and p = 17.

Actually solving the quadratic congruence x% = v(mod m) (finding the square roots of v) is not at

all an easy problem. In number theory, it's very common for simple-seeming equations to contain
enormous complexities, and this is one.

The most important use of quadratic residues is in knowing certain special cases of numbers

which aren’t residues. For example, the squares (mod 4) are 0, 1, 0, and 1—the only residues are 0
and 1! This is of paramount importance in many applications.

EXERCISE 23-9 Find all quadratic residues (mod 3) and (mod 8).

23.5 The Sum of the Divisors

In Volume 1 we derived a formula for the number of positive divisors of some number

n=ppg -l (233)
namely
d(n) = (e1 +1)(e2 +1)--- (ex + 1).

A similar, though more involved, problem is to find the sum of all the divisors of n, which we call
s(n).

EXAMPLE 23-8 1If n = 12, the divisors are 1, 2, 3, 4, 6, and 12, so d(n) = 6. We write s(n) =
1+2+3+4+6+12=28.

A very clever method exists to find s(n). Clearly it is the sum of expressions p{‘ .. -pf", where each
fiis nonnegative and less than or equal to the corresponding e; in (23.3). But rather than write down
all such expressions, we can get them in one fell swoop by writing the product

s(n)=(1+p1+p%+---+p§‘)(1+p2+p§+---+p§2)---(l+pk+pf+---+p;* ; (23.4)

EXAMPLE 23-9 The factorization of 12 is 22 - 3, so the product is

1+2+4)(1+3)=1+2+4+3+6+12,

as desired.

EXERCISE 23-10 Write down and expand the product for n = 16, 20, and 28.
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EXERCISE 23-11 Why does this product give the sum of the divisors?

\ EXERCISE 23-12 Make the product (23.4) simpler using the formula for the sum of a geometric
series.

EXERCISE 23-13 Why are
d(n) = Zl and s(n) = Zd
din din

correct expressions for d(n) and s(11)? Do you like them?

One ancient fascination in number theory is perfect numbers, numbers n for which s(n) = 2n. For
example, s(6) = 1+2+3+6 = 12, 50 6 is perfect. Numbers n for which s(n) > 2n are called abundant,
because they have many large divisors; numbers n for which s(n) < 2n are called deficient.

EXERCISE 23-14 Classify 24, 26, and 28 as abundant, deficient, or perfect.
$~_ EXERCISE 23-15 Show that any number of the form

zk(2k+l - 1)

is perfect if (25! — 1) is prime. This form was discovered by Euclid, and all known perfect numbers
have this form. (In particular, no odd perfect numbers have ever been found.)

EXERCISE 23-16 Show that 6 and 28 have the form of the previous exercise, and find the third
smallest perfect number.

23.6 Fermat’s Theorem

Consider doing arithmetic (mod p), with p a prime. If we take powers of some number a (where
a % 0(mod p)), the numbers a2, 2>, etc. cannot all be different (mod p), because they are all in the
range from 0 to p — 1. Thus some two of them must be the same, say " and 4°. Assume r > s; if
a’ = a° (mod p), we can write "~* = 1 (mod p), since p is prime. Thus the powers of a will hit 1 before
they repeat, and will look like

f_q ol 42
a,d,8,...,d=1d" =0d" =0, . a =1, =,,... (23.5)

We'll call the smallest integer # such that a' = 1 the period of a number (mod p) of a.

EXERCISE 23-17 Find the periods of 1,2, 3,4, 5, and 6 (mod 7).

AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585



AOPS Art of Problem Solving Volume 2 and Beyond Chapter 14 - 26 from Page 159 Inequalities to
Parting Shots part 2 of 2 parts 7 th edition Richard Rusczyk Sandor Lehoczky ISBN 9780977304585

the ART of PROBLEM SOLVING: Volume 2 < 259

We can say some interesting things about the period of a number a (mod p). Consider the set of
numbers {1,2,3,...,p - 1}. If we multiply all these numbers by a we get (a,24,3a,...,(p — 1)a}. Since
none of the new numbers ka is divisible by p, all are congruent to some number in the set {1, 2, ..., p—1}.
(Why do we leave 0 out?) Moreover, no two of {a,24, 34, ..., (p—1)a) are congruent: if ka = ja (mod p),
then k = j(modp). (Why can we cancel the 4?) This means that the set {a,24,...,(p — 1)a} is just a
rearrangement of {1,2,...,p — 1} when taken (mod p). We thus have

a-2a-3a-+(p-1)a=1-2-3:--(p—1)(modp),
and cancelling all common factors leaves
a1 = 1(modp). (23.6)

This equation is true for all primes p and for all numbers a # 0(modp), and is called Fermat’s
Theorem. It is an extremely important theorem of number theory, as you will see.

EXERCISE 23-18 Verify Fermat’s Theorem forp =7anda=1,2,3,...,6.
EXAMPLE 23-10 Find 4% (mod 17).

Solution: From Fermat, 4'® = 1(mod17). Raising both sides to the fifth power, we have
480 =1 (mod 17), so that

47 =47=4.(82° =4-(16* =4-(-1)* = -4 = 13 (mod 17).

EXERCISE 23-19 Find 6!%% (mod 23).

So what does Fermat’s Theorem mean for the period of a number a? First of all, the period is at
most p — 1, since the period is the smallest power which gives 1. Moreover, looking at the list (23.5)
we can see that the only powers u which give a* = 1 are multiples of t: a = 1, 4 = 1, etc. Since
aP~1 = 1, p — 1 must thus be a multiple of t, meaning that t must be a divisor of p — 1 for any a. This
puts a strict limit on the possible periods.

EXERCISE 23-20 Find all possible periods a number can have (mod 23), (mod 17), and (mod 7).

EXAMPLE 23-11 We know that every period divides p — 1, but especially interesting are elements
g whose period is exactly p — 1. For such an element g, the list

8 8 & 8

is just a rearrangement of 1, 2, ..., p— 1, since all are different and none is congruent to 0. Thus if we
have such a g, called a primitive root, every element of {1,2,3,...,p — 1} is congruent to g* for some
exponent e.

EXERCISE 23-21 Let the divisors of p — 1 be dy, d3, .... Prove that if we have a primitive root ‘S\
g (mod p), then for each d; there is an element with period d;.
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23.7 The ¢ Function

Suppose we try to extend Fermat’s theorem to systems where the base m is not prime. We will
immediately encounter several problems. (Follow along with the proof of Fermat’s Theorem from
the previous section.) The first comes when we try to show that there are no duplicates in the set
{a,2a,3a,...,(m - 1)a} by cancelling the a from the congruence ka = ja (mod m). We can only make
this cancellation if (m,4) = 1, so our entire proof breaks down if 4 is not relatively prime to m. (Why
was this not a problem when m was prime?) The second problem occurs when we try to cancel the
common factors from both sides of

1.2..-(m=1)=a-2a---(m—1)a(mod m).

We can only make this cancellation if all the numbers 1,2, ..., m — 1 are relatively prime to m, which
they won’t be if m is not prime. This is a more serious problem.

We can get around the problem if we start out listing only those integers which are relatively
prime to m. For example, for m = 14, the list would be (1,3,5,9,11,13}.

EXERCISE 23-22 Write down all numbers relatively prime to m = 20, m = 15, and m =12.

We are thus forced to use, instead of the list of all positive integers less than m, a new list of
integers less than m and relatively prime to it. Using this list, which we’ll write as {1,7y,72,...,m—1}
since 1 and m — 1 are always relatively prime to m, we can then see that {a,r1a,m4a...,(m — 1)a} is
a rearrangement of {1,r1,12,...,m — 1} if (a,m) = 1 by the same argument as before: each r;a is still
relatively prime to m because a and r; are, and r;a = rja(mod m) means that r; = r; (mod m) (since
(a,m) = 1). Since the two lists are the same (mod m), we have

a-na-ra---(m-1a=1-r-rp---(m-1)(mod m).
Moreover, since all the 7; are relatively prime to m, we can cancel them, getting
a-a---a=1(modm).

Here’s our final problem: how many a’s are there? There is an a for each number in our list, or
one for every number less than m that is relatively prime to m. We will thus form a new function,
¢(m), to represent the number of integers less than m and relatively prime to m; the statement of our
theorem becomes

a®™ =1 (mod m)

for all m and all a relatively prime to m.

EXAMPLE 23-12 Find ¢(16).

Solution: Since 2 is the only prime which divides 16, the odds are all relatively prime to it,
and the evens aren’t. Thus we just need to count the odds 1, 3,.. ., 15 which are less than 16 to find
that ¢(16) = 8.

EXERCISE 23-23 Find ¢(12) and ¢(11).
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EXAMPLE 23-13 Since a®™ = 1 (mod m) for a relatively prime to m, every number relatively prime
to m has a period (mod m), and that period must be a divisor of ¢(m).

Any number not relatively prime to m doesn’t have a period (mod m). If (m,a) = g # 1, then
(m,a) > g for any power k. But if & = 1(mod m), then " = jm + 1 for some j, and (@,m) =1, a
contradiction.

EXERCISE 23-24 Find ¢(p) for p prime. Show why the formula a%" = 1(mod m) is considered to
be a generalization of Fermat’s Theorem. (It is called Euler’s generalization.)

EXERCISE 23-25 Find ¢(p*) for p prime and k a positive integer.

EXAMPLE 23-14 Prove that the ¢ function is multiplicative; that is, ¢p(mn) = ¢p(m)p(n) as long as §\
(m,n) =1.

Solution: This is a difficult proof, but a very worthwhile one, since proving tha.t a function
is multiplicative usually tells you an enormous amount about the structure of the function.

List the integers from 1 to mn in a grid, as:

1 m+1 2m+1 -« (n=1)m+1
2 m+2 2m+2 - (n=1)m+2

m 2m 3m cee mn

Now consider any element r which is not relatively prime to m: (m,r) = d # 1. Then any element

in the row
r m+r 2m+r -~ (m=1)m+r

is not relatively prime to mn: since d divides the multiple of m and d divides r, then d divides the
whole thing. Thus, when counting elements relatively prime to mn, we only need to consider rows
starting with elements relatively prime to m. By definition, there are ¢(m) such rows.

So consider one such row, made up of elements km +r fork =0, 1,...., (1 —1). The row contains
elements, and no two of these elements are congruent (mod n), since jnt + r = km + r (mod n) would
imply j = k(mod n). (This is where we use the assumption that (m, n) = 1. Make sure you see how.)
Since we have n elements and no two are congruent, the elements of the row are a rearrangement
of0,1,2,...,n—1(mod n). Thus ¢(n) of these elements are relatively prime. All in all, there are
¢(m) rows of elements relatively prime to m, with ¢(n) elements in each row relatively prime to n, '
so there are ¢(m)¢(n) total elements relatively prime to mn. 8

WARNING: A multiplicative function f only necessarily satisfies f(mn) = f(m)f(n) when m ‘
and n are relatively prime! For example, you can directly calculate that ¢(4) = 2, ¢$(2) = 1, and

P(8) =4 # $(4)9(2).

EXAMPLE 23-15 Using Example 23-14 and Exercise 23-25, we can write down a general formula
for ¢(m) in terms of the prime factorization m = pyps - pit. We use the multiplicative property of

¢ along with the fact that (p{', p;l ) = 1fori # j to write

PETPF ) = dEIIGPT) - PUR)-
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Since ¢(p{") = pi' (1 - ,}), this becomes
!

1 1 1
(-2)0-2) 4 (1-3)
(-5 ) (1-5) (15,
(o) (-2 03)

p1 P2 Pk

P(m)

N
n

EXERCISE 23-26 Find ¢(6876).

23.8 Wilson’s Theorem

Wilson’s Theorem is rarely useful, but is very powerful when it is useful. The theorem states that
for any prime p, we have

(p—1)! = -1 (modp).

EXAMPLE 23-16 Wilson’s Theorem only works for primes. If m is composite, m = ab for some a
and b which are less than m. The product (m — 1)! = (m — 1)(m — 2) - - - (2)(1) contains both a and b, so
is divisible by m. Thus (m — 1)! = 0 (mod m) if m is not prime.

EXERCISE 23-27 The slick preceding example actually glosses over a major point: what if a = b?
Then only one of @ and b appears in (m — 1)(m — 2) -+ (2)(1). Does this yield any counterexamples to
(m —1)! = 0(mod m)? Find them, and prove that the equation is still true for all other cases.

To prove Wilson’s Theorem, we consider some primitive root g (mod p). By the definition of a
primitive root, the numbers (g, g%,...,8P71} are the same as the numbers {1,2, . . ., p—1} (mod p). We
then have

(p-1)1=1-2-3--(p=2)-(p-1)=g- g g g1 = D2,

Butg” = g(gp—l) =g,s0 (p e 1)’ = gP(P-])/Z = (gP)(P—l)/2 = g(P—l)/Z_ Lett = g(p—l)/Z; thenf2 =1 (modp),
since £2 = gP~1. Thus {2 =1 =0, or (t = 1)(t + 1) = 0, or ¢ = +1. Since the period of gisp—1, we can't
have t = g?~1/2 = 1, because (p—1)/2 < p—1. (Remember, gP71is the smallest power of g congruent
to 1 mod p.) Thus, (p — 1)! = g¥~1/2 = t = —1, and we're done.

EXERCISE 23-28 The proof of Wilson’s Theorem is an excellent example of the way in which
primitive roots and powers can be used to prove statements in number theory. Go through it again,
and make sure you understand every step.
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Problems to Solve for Chapter 23

373. Show that for all prime numbers p greater than 3, 24 divides p*> — 1 evenly. (AHSME 1973)

374. Given that n — 4 is divisible by 5, list which of the following are also divisible by 5:
-1, n*-4,n*-16, n+4, n* - 1.

(Mandelbrot #3)

375. If the same number r is the remainder when each of the numbers 1059, 1417, and 2312 is divided
by d, where d is an integer greater than one, find d — r. (AHSME 1976)

376. Find the sum of all x, 1 < x < 100, such that 7 divides 22 + 15x + 1. (Mandelbrot #3)
377. What is the largest integer which must evenly divide all integers of the form n° —n? (AHSME 1957)
378. What is the units digit of 772 (MA@ 1990)

379. What is the size of the largest subset S of {1,2,3, ..., 50} such that no pair of distinct elements of
S has a sum divisible by 7? (AHSME 1992)

380. Let f(x) = x2+3x+2 and let S be the set of integers {0,1, 2, ..., 25). Find the number of members
s of S such that f(s) has remainder zero when divided by six. (AHSME 1964)

381. For any integer n greater than 1, how many prime numbers are there greater than n! + 1 and less
than n! + n? (AHSME 1969)

382. Find the last three digits of 91%. (Mandelbrot #2)
383. What is the smallest possible value of n such that

is a rational number? (MATHCOUNTS 1992)

384. Adam and Ben start their new jobs on the same day. Adam’s schedule is 3 workdays followed
by 1 rest day. Ben’s schedule is 7 workdays followed by 3 rest days. On how many of their first 1000
days do both have rest-days on the same day? (AHSME 1993)

385. Find the last two digits of 7%%%. (MATHCOUNTS 1986)

386. What is the least number of n consecutive positive integers, n > 1, that have a sum of 1000?
(MA® 1987)

387. Let x and y be integers such that 2x + 3y is a multiple of 17. Show that 9x + S5y must also be a
multiple of 17. (USAMTS 1)

388. Note that 1990 can be “turned into a square” by adding a digit on its right, and some digits on
its left; i.e., 419904 = 6482. Prove that 1991 cannot be turned into a square by the same procedure;
i.e,, there are no digits d, x, y,...such that ... yx1991d is a perfect square. (USAMTS 3)
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389. Prove that for all natural numbers k, k° - k is a multiple of 10. (M&IQ 1991)

390. If x and y are positive integers and neither of them are divisible by 5, show that x* + 4y* is
divisible by 5. (M&IQ 1991)

391. Prove that if exactly one of the positive integers x and y is a multiple of 5, then x* + 4y* isnot a
multiple of 5. (M&IQ 1991)

392. Prove that if p and p + 2 are both prime integers greater than 3, then 6 is a factor of p + 1. (Canada
1973)

393. Let n be an integer. If the tens digit of n? is 7, what is the units digit of %7 (Canada 1978)

394. Prove that none of the numbers a, = 1001001 - -- 1001 is prime, where n = 2,3,4,... denotes the
number of occurrences of the digit 1 in a,,. (M&IQ 3)

395. Let p be a prime number. Prove that there exists an integer a such that p|(a> — a + 3) if and only
if there exists an integer b such that p|(b* — b + 25). (This problem originally appeared on a contest
used to determine the Chinese national team.) (MOP)

396. Each of the numbers x3, x5, ..., x, equals 1 or —1, and
X1X2X3X4 + X2X3X4X5 + * -+ + Xp_2Xn-1XnX1 + Xn-1XnX1X2 + XpX1X2Xx3 = 0.
Prove that n is divisible by 4. (IMO 1985)

397. Prove thatd(n) and s(n), the number of and sum of the divisors of n respectively, are multiplicative
functions. (Remember, a multiplicative function f only necessarily satisfies the identity f(mn) =
f(m)f(n) when (m,n) = 1.) )

398. Find the positive integer m such that the polynomial p® +2p + m divides p'2 — p!1 + 3p0 +11p3 -
p* +23p + 30.

399. Prove that, for all positive integer pairs (a, b)) where b > 2, 2Y — 1 does not evenly divide 27 + 1.

400. Let d be any positive integer not equal to 2, 5, or 13. Show that one can find distinct (a,b) in the
set {2,5,13,d} such that ab — 1 is not a perfect square. (IMO 1986)

401. Let a and b be integers and 7 a positive integer. Prove that b"'a(a + b)(a + 2b)-+-(a + (n - 1)b)/n!
is an integer. (IMO 1985)

402. Prove that a positive integer is a sum of at least two consecutive positive integers if and only if
it is not a power of two. (Canada 1976) )
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——the BIG PICTURE

Number theory has traditionally been viewed as one of the least “applied” branches of
mathematics, one distant from ordinary human activities. But with modern approaches to
cryptography—the study of codes—number theory has come to the forefront of a wide range
of present and future applications.

Traditionally in cryptography, if I could send you a code, I could read other codes sent
to you. Thus if both Richard and I sent you coded material, I could read his messages and
he mine. This was undesirable, but thought to be unavoidable. However, in the late 1970’s
mathematicians discovered that number-theoretical methods could be used in which I can
send you coded messages without being able to decode other coded messages sent to you.

To see the basic idea, let’s consider the Massey-Omura cryptosystem. We can easily devise
a way to convert a message into some (probably large) number, and to convert numbers back
into messages. (Come up with a method yourself.) So imagine I have a message/number M to
send to you. Everyone interested in sending or receiving coded messages has a secret encoding
number e and decoding number d, such that de = 1(mod q — 1), where g is some huge prime
(say, 100 digits) used by everyone.

To send me a message M, Richard calculates M‘® (mod g) and sends it to me. This is garble
to me, since, not having Richard’s encoder eg or decoder dg, I can’t unscramble the message.
I take the message to the power of e, and send the result, M®k® (mod g) , back to Richard.
Even though he knows M and M®® (mod g), Richard can’t extract es—at least, no one has
yet figured out how to do so in less than 10,000 years or so. Since Richard can’t get es, my
code is still secure. Richard takes the number I gave him to the dr power now, sending me
Méreres = Mes (mod g). (Since dreg = 1(mod g — 1), M9¢® = M (mod q) by Fermat’s Theorem,
which allows this simplification. Make sure you see why.) I then get the message M by taking
my number M to the ds power, again using Fermat’s Theorem. Richard’s code is secure, since
I can’t get eg from M*k (mod q), which I got initially, and M, which I now have.

So number theory provides a nice way to send codes securely, with neither party learning
the other’s code. The major caveat is that the whole scheme fails if someone figures out how
to get e from M (mod q) and M—and mathematicians are, of course, working on that problem.

Chapter 24 Diophantine Equations page 266
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Chapter 24

Diophantine Equations

A Diophantine (die-oh-FAHN-teen) equation is any equation with two or more unknowns, with
one catch: we are interested only in integer solutions. This makes seemingly easy problems much
more involved. Since integers are crucial, you might guess that number theory plays a big part in
solving Diophantine equations. You'd be right.

241 ax+by=c

Requiring integer solutions adds a new dimension to the old linear equation. To be specific, the
problem is to find integers x and y so that

ax+by=c

for some integer constants a, b and c.

2411 c=0

Let’s first look at the simple case where ¢ = 0. We then have ax = —by.

EXAMPLE 24-1 The integer solutions of x = -2y are....., (4,-2), (2,-1), (0,0), (-2,1), (=4,2), ... In
general, the solutions are given by (=2k, k) for any integer k.

EXERCISE 24-1 Find all solutions of 3x = 4y in terms of an arbitrary integer k.

The last two problems point the way to the solution of ax = —by ifa and b are relatively prime.
Assume they are. Since a divides the left side of the equation, it must divide the right side as well.
But (4,b) = 1, so a must divide y! We can thus write y = ay’ for an integer y’. By the same argument
b|x, and we can write x = bx’. Substituting these expressions in, we have

’

a(bx') = -b(ay’),

or ¥’ = =y’ = k for some common value k. Thus the solutions of the system are given by (bx’,ay’) =
(bk, —ak) for all integers k.

a4 266 »>
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In our previous examinations of the line equation ax + by = ¢ (Volume 1), we relied heavily on
graphing. Graphing is less important here, but it still gives us a picture of what’s happening. We
graph the line equation as always, but now the only solutions we’re interested in are those where
the line goes through a lattice point, a point (m, n) where m and n are both integers.

EXERCISE 24-2 Draw a graph of the equation 2x = -3y. How do the solutions (3k, —2k) appear
geometrically? Does this help you see what's going on?

If 2 and b are not relatively prime, we only need to make a small change. Let (2,b) = g and write
a=ga’ and b = gb’. Then our equation is ga’x = —gb'y, or a’x = —b'y with @’ and b’ relatively prime.
Thus the solutions are (b'k, —a’k), or (bk/g, —ak/ ).

EXERCISE 24-3 Write down the solutions of 4x = —6y and compare them to the expression
(bk/g,ak/g). Do they agree?

EXERCISE 24-4 Graph the equation 4x = -6y and find the solutions on the graph. How has the
presence of a common divisor changed things from Exercise 24-2?

2412 c#0

In the case that ¢ # 0, we need to take a little more care. Rather than dive into the general formulation,
let’s consider a set equation, say 20x + 12y = 28. We're not entirely free in our choice of equation
ax + by = ¢, because any common divisor of 2 and b must divide c. (Make sure you see why.) Thus
the equation 20x + 12y = 26 would have no solutions, because (20,12) = 4 does not divide 26. But 4
does divide 28, so we can divide both sides of the initial equation by 4 to get 5x + 3 y =7. The key to
solving this new equation is to find one solution and build the rest from there.

To solve 5x + 3y = 7, we write 5x = 7 - 3y. Considering this equation (mod 3) to eliminate the
3y, we find 5x = 7 - 3y (mod3) = 7(mod3) = 1(mod3). This congruence has a solution r since 5
and 3 are relatively prime (this is why we divided by the GCD before proceeding). We solve this
congruence by adding 3(3) = 9 to the right, yielding 5x = 10 (mod 3), so x = 2 (mod 3). We can let x
be any solution of this congruence to find a solution (x, y), so we'll take the simplest, xo = 2. Hence,
Yo = (7 = 5x)/3 = —1 and our specific solution is (xo0, o)

EXERCISE 24-5 Verify that (2, -1) is a solution to 5x + 3y = 7.

EXERCISE 24-6 Show that a specific solution of the equation ax + by = ¢, (a,b) = 1, is

(x0, o) = (f/ Z —bar)

where r is any solution of ar = ¢ (mod b).
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To get the general solution to 5x + 3y = 7 from the specific solution (xg, yo), we find the solutions
(x1, y1) of 5x = —3y. The solution of 5x + 3y = 7 is (xo + X1, Yo + ¥1), because
5(x0  u x1) + 3(yo + yl) = (510 + 3yo) + (5x1 + 3y1) =7+0=7,
as required.

Since the solutions of 5x = -3y are given by (3k, —5k) for all integers k, the general solution of
5x + 3y =7 is (2 + 3k, -1 — 5k).

EXAMPLE 24-2 Find all solutions of 3x + 7y =12.

Solution: As before, we write 3x = 12 — 7y and consider the equation (mod 7), yielding
3x = 12(mod7), so x = 4(mod 7). Hence, we’ll take x = 4 and find y = 0, so (x,y) = (4,0) is a
specific solution. Solving 3x + 7y =0, or 3x = -7y, we get the solutions (x,y) = (7k, —=3k). Combining
this with our specific solution, we find that our general solution is (4 + 7k, 0 — 3k).

EXERCISE 24-7 Find all solutions of:
i. 6x +4y =4.
ii. 6x+4y =5.

EXERCISE 24-8 Does Example 24-2 have any solutions in strictly positive integers?

EXAMPLE 24-3 The linear equation ax + by = ¢ becomes even more interesting if we require that x
and y be nonnegative. Often there is no nonnegative solution at all, for example if the equation is
3x+7y =4

EXAMPLE 24-4 What is the largest c for which there is no solution in nonnegative integers for
7x+ 10y = c?

Solution: If we start trying small ¢’s, we will be frustrated: there is no solution for ¢ = 1, 2,
...,6,8,9,11, and so on. On the other hand, for large enough c there will always be a solution. We
can write the c values in a grid, with nonnegative x along the top and y along the side:

|6 1 2 38
0 7 14 21
10 17 24 31
20 27 34 41
3130 37 4 51

N = O

All ¢ = 0(mod 7) can be obtained from the first row. All ¢ = 10 = 3 (mod 7) such that ¢ > 10 can
be obtained from the second row. All ¢ = 6 (mod 7) such that ¢ > 20 can be obtained from the third
row. We can continue this until the seventh row, where all ¢ = 60 = 4 (mod 7) such that ¢ > 60 can be
obtained.

We can certainly get all ¢ > 60, since we can getc =0, 1,..., 6 (mod 7). We can get all ¢ > 50
except those for which ¢ = 4 (mod 7) (since the smallest ¢ = 4(mod 7) is in the seventh row), so the
largest c we can’t get is the largest ¢ = 4 (mod 7) less than 60. This c is 53.

&

EXERCISE 24-9 Prove that the largest ¢ which cannot be obtained by mx + ny = ¢, with nonnegative
xand yand (m,n) =1,ismn—m—n.
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242 x2+y*=22

Solving the equation x? + y? = 22 for integers (x, y, 2) is the problem of finding Pythagorean triples,
sets of integers which can be the sides of a right triangle.

If any two of x, y, and z share a common factor d, then that factor must also divide the third. For
example, if x = dx’ and z = dz, then i = 22 — x2 = d%(z’? - x’?), so dy as well. Solutions withd =1,
so that x, y, and z are relatively prime, are called primitive. Once we find all the primitive solutions,
the others will follow as constant multiples. (For example, (3,4, 5) is a primitive triple, and (6,8, 10)
follows from it as a constant multiple.)

We will thus find the primitive solutions. First let’s consider the parity (even or odd) of the
solutions. If x and y are both even, then z is also even, so 2 is a common factor, so the solution is not
primitive. If x and y are both odd, then each of their squares is congruent to 1 (mod 4), so the sum
22 + y? is congruent to 2 mod 4. But every square is congruent to 0 or 1 (mod 4), so this cannot be 2%,
and this case is invalid as well. We are left with x and y being one even, one odd, and z thus being
odd.

Without loss of generality, let x be the even one of xand y. Thenz—yand z + y are both even, but
otherwise have no common factors—any common divisor would have to divide the sum, 2z, and
the difference, 2y, but y and z are relatively prime. Now, consider the equation

2 -y -9 Zxy

4 4 2 2
All the fractions are actually integers, since x, z + y, and z — y are all even.

(24.1)

The product HTy . Z—Ty is a perfect square by equation (24.1). But Z+T}/ and 2=¥ are relatively
prime by our discussion of the previous paragraph, so each must be a square individually. (We
proved this in Section 1 of Chapter 23; reread the pertinent material if this isn’t clear.) Hence there
exist integers r and s such that

z-y _ z+y
- =s> and 5 =P

Solving, we thus havez =r? +s? and y = r* — s%.

EXERCISE 24-10 Plug these values into the equation x2 + y? = z? and show that x = 2rs.
EXERCISE 24-11 Prove that r and s must be relatively prime.

Combining our results, we find that the general primitive Pythagorean triple is given by
(2rs,* =%, +5%)

for relatively prime r and s with r > s. Nonprimitive triples like (6, 8,10) are obtained as direct
multiples of primitive triples and might not have r and s of their own.

\I/

1D

EXERCISE 24-12 Find r and s for the triples (3,4,5), (6,8,10), and (5,12,13).
EXERCISE 24-13 Figure out how many primitive Pythagorean triples (x, y, z) there are with z < 100.
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243 x*+yt=22

The realm of Diophantine equations is huge, and we have no chance of looking at all the possible
equations and techniques in one chapter. Instead, we'll look at a couple more equations which
are common, or whose solutions contain especially useful ideas. In this section, we’ll look at the
Diophantine equation x* + y* = z2. By proving that this has no solutions, we’ll also prove that
x* + y* = z* has no solutions. (Do you see why?)

\ To prove that the equation x* + y* = z? has no solutions in positive integers, we will assume
instead that it does have solutions, and consider the solution whose value of z is the smallest. We'll
then show that there is another solution whose value of z is smaller—a contradiction. (This common
method of proof is called infinite descent, because we in effect show that one solution implies
another solution with smaller z, which implies another solution with smaller z, and so on.) The
proof is long and has far too many letters, but it has lots of important concepts, and taken step by
step it’s not too bad. Be prepared to read it more than once to understand it completely, though.

Take the solution of x* + y* = 22 with smallest z to be (xo, ¥o, z0)- If xo and yp are not relatively
prime, their divisor d must divide zq twice. (Do you see why?) The solution

(xo/d)* + (yo/d)* = (20/d)?

would then be a solution with z < 2, a contradiction. So we can assume xg and yy are relatively
prime.

The reason we want xo and yj to be relatively prime is that writing
() + (43 =23

gives a Pythagorean triple (x3, 3, z0)- As longas x and yo are relatively prime, this triple is primitive,
which means that there are relatively prime integers r and s such that

:30 = 2rs
B o= PA-g
zZy = T‘2+52.

§\ EXERCISE 24-14 Prove thatsis even. (Hint: First prove that r and s can’t be either both even or both
odd. Next prove that having r even and s odd won’t work by looking at the equation Y =r~-sin
mod 4.)

Since s is even from Exercise 24-14, we let s = 2t. From x% = 2rs, we get
2
(%) =rt.

EXERCISE 24-15 From Exercise 23-1 of Chapter 23 (which you should look back at), (x0/2)% = rt will
imply that r and ¢ are both perfect squares if we can prove that r and # are relatively prime. Prove
that r and t are relatively prime. (Remember that r and s are relatively prime.)

EXERCISE 24-16 From the previous exercise, r and f are squares. Thus, let r = randt= 2. Prove
that r; and #; are relatively prime, and that r, is odd.
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EXERCISE 24-17 Prove that (22)2 + y3 = (1})2. (Use the definitions.)

EXERCISE 24-_18 Show that 2t and y2 are relatively prime, so that (263, y,73) is a primitive
Pythagorean triple.

From Exercise 24-18, we can (again!) find two relatively prime integers R and S so that

22 = 2RS
Yo = RZ_sZ
7 = RE+82

Since {2 = RS and R and S are relatively prime, we can again use Exercise 23-1 to show that R and S
are perfect squares: R = R, S = §2,

Using 2 = R? + $2, we have
=R} +S}

At long last, here is another solution (x, ,z) = (Ry, S1, 1) to our original equation, z2 = x* + y*. And
since r; < zp, this new solution has a smaller z than the original one. This contradicts our assumption

way back when that zy was as small as we could get, so there can be no solution in positive integers
to the equation x* + y* = 22,

EXERCISE 24-19 Why is r; < zy, as stated above?

24.4 The Pell Equation
The last Diophantine equation we’ll look at is the Pell equation,

x? - Dy = +1.

EXERCISE 24-20 Play with the Pell equation for D = 2. Can you find any solutions?

EXERCISE 24-21 Analyze the equation x2 = Dy> = 1when Dis a square, D = E2,

The solutions to the Pell equation when D is not a square turn out to be closely connected to

the continued fraction expansion of VD. In fact, if a is the period of the continued fraction and
C = Py/Qx is the kth convergent, then all solutions to the Pell equation x2 — Dy? = +1 are given by
(%, y) = (Pia, Qia), for all positive integers i.
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EXAMPLE 24-5 The continued fraction expansion for V3is

1
1
1+ FG};
and the first few convergents can easily be calculated as 1, 2, 3, . Since the period is 2 (why?), we
expect that the second and fourth convergents will yield solutions to x2 - 3y? = +1: (2,1) and (7,4)
can be verified to work. On the other hand, the first and third convergents will not yield solutions:
you can verify that (1,1) and (5, 3) are not solutions.

EXERCISE 24-22 Find the first few solutions of x? — 22 = +1, x2 - 3y? = 1, ¥ - 57 = %1, and
x2 - 6y2 = x1. In each, which solutions correspond to the + and which to the —?

EXAMPLE 24-6 Suppose we have two solutions (x, y) and (w, z) to the Pell equation. Prove that if
(x+ VD y)w + VDz) = u + VYD, then (, ) is also a solution.

1+

’

Solution: If (x + \/l3y)(w +VDz) = u + VDo then we have u — VDo = (x - \/ﬁy)(w - VD2).
(Verify this.) Then

u? - Dv?

(u+ \/Bv)(u - \/Bv)
(x+ \/Ey)(w + Vﬁz)(x - \/Ey)(w - \/52)
( - DY)(w? - DZ)

= =1,

so (u,v) is a solution, as desired. We can even say more: it’s clear from this equation that (i, 7)
corresponds to the + if (x, y) and (w, z) correspond to either both + or both —, and (1, v) corresponds
to — otherwise.

EXERCISE 24-23 Prove that if (x,y) is a solution, writing (xp + \/5_1/0)" = a+ VDb will yield a
solution (g, b) for any power n.

EXAMPLE 24-7 Suppose we have the smallest solution (xo, yo) of a Pell equation. From the previous
exercise, writing (xo + VD wo)y =a+ VDb will yield solutions (a,b). These, it turns out, are all the
solutions. Thus we don’t have to wade through mountains of convergents to find the solutions to
the Pell equation. We find the smallest solution using convergents, and the rest by taking powers.
For example, the smallest solution for D = 3 s (2,1). We have (2 + V3)2 = 7+ 43, and (7,4) is the
next solution. We have (2 + V3)® = (2 + V3)(7 + 4 V3) = 26 + 15V3, s0 (26, 15) is the third solution.
With this method we can find higher solutions much faster than with the convergent method.

24.5 General Methods

By looking at specific Diophantine equations throughout this chapter, we have failed to put enough
emphasis on two of the most generally applicable techniques. Both provide key insights into many
Diophantine equations, and should always be kept in mind when a new equation is presented to
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solve. The first technique is just to look at equations in some modulus. For example, an equation
with lots of squares might become clearer in mod 4 or 8, since every square is congruent to either 0 or
1 (mod 4) and to either 0, 1, or 4 (mod 8). The second technique is to make simplifying substitutions.

EXERCISE 24-24 Prove that x* + y? = 100000003 has no solutions in integers.
EXAMPLE 24-8 Solve the equation x> + 117y = 5.

Solution: The prime factorization of 117 is 9 - 13, so an idea might be to consider the equa-
tion (mod 9). (Of course, your first idea won't always work; sometimes these things take a little
experimentation.) The cubes (mod 9)are13=1,22 =8=-1,33=0,43=64=1,5° = (-4 = -1,
6°=0,7°=(-2)°=1,8 = (-1)? = —-1,and 9° = 0: that is, either -1, 1, or 0! (Thus any equation with
cubes may look nicer in mod 9.) Since 117 = 0(mod 9), the equation is x> = 5 (mod 9), which has no
solution since 5 is not a cube (mod 9).

Problems to Solve for Chapter 24

403. Find two nontrivial solutions to x? — 8y = 1.

404. In how many ways can 1776 identical flags be partitioned into piles of either three or four flags
so that every flag is in some pile? (Mandelbrot #2)

405. How many pairs of integers (m, n) satisfy the equation m + n = mn? (AHSME 1977)

406. Find the number of pairs (m, n) of integers which satisfy the equation > + 6m? + 5m = 27n3 +
9% +9n+1.

407. How many distinct pairs of integers (x, y) such that 0 < x < y satisfy V1984 = /x + \Y? (AHSME
1984)

408. If 4 is an integer that can be expressed as the sum of two integer squares, then prove that 3q
cannot be so expressed. (Mandelbrot #2)

409. List in which of the following two-digit pairs can the square of an integer end: 07, 29, 41, 63, 85.
(Mandelbrot #3)

410. How many Pythagorean triangles are there with the property that the area of the triangle is the
same as the perimeter? (MA© 1991)

411. Prove that no number of the form 3" + 3" + 1, where m and n are positive integers, can be a

perfect square. (USAMTS 1)
412. Find the hypotenuse of a right triangle whose legs are 20806 and 408. (Mandelbrot #1)

413. Solve the equation
T4+2043 4+ xl = 32

for all positive integer pairs (x, y). (M&IQ 1992)
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414. Find a primitive Pythagorean triangle one of whose legs is 90 or prove that no such triangle
exists.

415. Find all primitive Pythagorean triangles whose area is equal to twice the perimeter.
416. Prove that every Pythagorean triangle has one side whose length is a multiple of 5.

417. Prove that if there exist natural numbers a, b, ¢, d, e for which a* + b* + ¢ + d* = ¢%, then at least
three of the numbers 4, b, ¢, and d are multiples of 5. (M&IQ 1991)

418. If a, b, ¢, and n are positive integers with a < 11, and n* + n” — n° = 0, compute the maximum
value of a" + b" — ¢". (ARML 1988)

419. Show that the equation 14x2 + 15y = 7'9% has no solution in nonnegative integers x and y.
(USAMTS 2)

’

420. Are there integers m and n such that 5m? — 6mn + 7n? = 19857 (IMO 1985)

421. Three relatively prime integers are the sides of a right triangle. If the smallest leg has length 28,
find the sum of all the possible values of the hypotenuse. (MA© 1990)

/

422. Prove that there are no integers a and b such that 5% + 6ab + 7b? = 1993. (Bulgaria 1993)

423. Prove that it is impossible for three consecutive squares to sum to another perfect square.
(Mandelbrot #2)

424. Suppose D is prime. Prove that x* — Dy? = ~1 has no solutions if ~1 is not a quadratic residue
(mod D).

425. Show that x® + 3y° = 92% has no nontrivial solutions.
5\ 426. Prove that the Diophantine equation
PP+ + 2y + Yz + 2+ xyz =0

has no solutions in nonzero integers. (Hint: Consider the parity of the left hand side in various
cases.)
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Chapter 25

Graph Theory

25.1 Points and Lines

A graph is a set of points, some of which are connected together by lines.
. (The word graph is also used to refer to the plot of a function. That’s mathe-
matical nomenclature for you.) A graph is shown at left. The points of a graph

. are called its vertices, while the lines are called edges.

,/ Graphs can be used to model all sorts of situations. For example, the vertices
could represent people, with an edge connecting them if they are friends. The vertices of the same
graph could instead represent volleyball teams, with an edge connecting pairs which had played
games against each other. -

A complete graph or clique is a graph in which every pair of vertices is connected
by an edge. For example, a complete graph with five vertices is shown at right. The
complete graph with n vertices is called Ky; thus the graph at right is Ks.

EXERCISE 25-1 Draw K3, K3, and K.

EXAMPLE 25-1 A graph is determined only by its vertices and their connections,
not by the location in space of the vertices. Thus the K5 above can be drawn in the
more symmetric form at right and still be the same graph.

EXERCISE 25-2 How many edges are there in a complete graph with n vertices?

The opposite of a complete graph is a null graph or independent set, which is a collection of
vertices with no connections between them.

EXERCISE 25-3 Find the size of the largest clique and the largest independent set contained in the
graph we drew at the start of this section.
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A graph is connected if any two vertices can be connected by a path. Which of the graphs we
have drawn so far are connected? For most problems in graph theory, we will assume the graph
under consideration is connected, because otherwise we can look at each connected piece separately.

25.2 Planar Graphs

A graph is said to be planar if it can be drawn in a plane with no intersecting
edges. For example, Ky is planar because it can be drawn as at right.

EXERCISE 25-4 Try to draw Ks such that no edges intersect.
EXERCISE 25-5 Prove that Ks is not planar.

One interesting thing about a planar graph is that we can define faces of the
graph. The faces are just the smallest regions bounded by edges; two faces of the
planar graph at left have been shaded as examples.
‘ WARNING: There is one face which you may not have thought of. The entire
area outside the graph is also considered a face, the unbounded face.

EXERCISE 25-6 How many faces does K4 have when drawn so as to be planar, as above?

EXAMPLE 25-2 Define the degree of a face to be the number of edges which adjoin it. Now think
about the sum D of the degrees of all the faces of a graph. Each degree is greater than or equal to
three (do you see why?), so that the sum of the degrees is at least 3 per face, so D > 3F, where F is
the number of faces.

5\ EXERCISE 25-7 Let E be the number of edges of the graph. Use the previous example to show that
Ex2F.

Having defined faces in this way, an interesting relation emerges. Let the number of vertices of
a graph be V, the number of edges E, and the number of faces F. Then Euler’s formula (or one of
Euler’s formulas, anyway) says that if the graph is connected we always have

V-E+F=2

A proof of Euler’s formula follows easily by induction on the number of edges. As a base case,
take two vertices connected by one edge. In this case V =2, E = 1, and F = 1, which clearly obeys
the formula. (F = 1 because of the unbounded face.) For the inductive step, assume that the formula
works for all graphs with E = k - 1. To get from a graph with E = k — 1 to one with E = k, we can
add an edge in two ways.
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First, we can add an entirely new vertex and connect it by one edge B e
to an existing vertex. In this case, no new face is formed, as at right, but

the numbers of vertices and edges each increase by 1. Thus we go from
V—E+F=2to(V+1)—(E+1)+F = 2—the formula is still satisfied.
Second, we can add a new edge and connect it by one edge to an
existing vertex. In this case, no new vertices are added, but the numbers new
of faces and edges each increase by 1. Thus we go from V-E+F =2 to
V = (E +1) + (F + 1) = 2—the formula is still satisfied.
Since the inductive step covers both possible ways to add an edge, the proof is complete. The

technique of this proof, performing induction on the number of edges or vertices of a graph, is a
very standard one in proving theorems on graphs.

new

EXERCISE 25-8 Convince yourself that the two ways we have shown to add an edge are the only
two ways.

EXERCISE 25-9 Draw some connected planar graphs and confirm Euler’s formula for them.

EXAMPLE 25-3 We can use Euler’s formula and Exercise 25-7 to derive an interesting inequality
for planar graphs. Starting with V — E + F = 2, we write V + F = E + 2. Inserting F < 3E from
Exercise 25-7, this becomes V + 3E > E + 2, or, simplifying,

E<3V-6. (25.1)

Equations like (25.1) are very useful. For example, you proved in Exercise 25-5 that Ks is not

. . . . - 5 _
planar; complicated arguments were necessary. But there is a simpler way. For Ks, E = (2) =10and
V = 5; these values do not satisfy (25.1), so Ks can’t be planar.
WARNING: While (25.1) holds for every planar graph, it is NOT true that every graph satisfy- ‘f
ing (25.1) is planar! Be careful that you don’t make this mistake.

25.3 Example: The Platonic Solids

In Volume 1 we claimed that there were exactly five regular polyhedra. With graph theory, we have
the tools to prove that assertion. The regular polyhedra are often called Platonic solids.

First, we observe that any polyhedron can be converted to a graph. Simply
punch a hole in one of the faces and open the polyhedron up. (There will be
some stretching or squishing involved.) For example, the graph corresponding
toacubeisatright. The face we have punched a hole in becomes the unbounded
face, so the graph has six faces, just like a cube.

If the polyhedron corresponding to a graph is regular, then all the vertices must have the same
degree, say d. Similarly, all faces must be bounded by the same number of edges, say f.

EXERCISE 25-10 Show that E, the total number of edges, is equal to %d V, where V is the number of
vertices.

EXERCISE 25-11 Show that F, the total number of faces, is equal to dV/f.
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1
Using the results of the two exercises, we can write Euler’s formula, V —E+F = 2,as Ve idl‘: o
dV/f = 2. This simplifies into V(2f — df + 2d) = 4f. Since V and 4f are both positive, we thus
conclude that 2f —df + 2d is positive, so that
df -2f -2d <0.
Adding 4 to both sides, we can then factor, to get
@-2)(f-2)<4.
Since d and f are positive integers greater than or equal to 3, there are only a few solution:
inequality.

s to this

EXERCISE 25-12 Find all solution pairs (d, f).

Each pair (d, f) you found in Exercise 25-12 corresponds to one of the
Platonic solids. You should have found 5 pairs (4, f), thus proving that
there are only 5 regular polyhedra! For example, you can confirm that the
octahedron has f = 3 (faces are triangles) and d = 4. The corresponding
graph is at right.

EXERCISE 25-13 Verify that every vertex in the graph above is of degree 4, and that every face
(including the unbounded face!) is surrounded by exactly 3 edges.

EXERCISE 25-14 Pair up the remaining four (d, f) pairs to the corresponding Platonic solids.

25.4 Walking Around on Graphs

Imagine that a graph is a network of roads. Two roads intersect when they meet at a vertex. We can
imagine walking around on this network, going from one intersection to another which is connected
by a road. A general walk is just any way to do this. On the other hand, there are many interesting
types of restricted walks. For example, a path is not allowed to go through any vertex more than
once, while a trail is not allowed to go along any edge more than once. (You'll have to forgive these

names.)

EXERCISE 25-15 On Ks, draw a path, a trail which is not a path, and a walk which is neither.

A cycle is a path which ends at its starting point. A cycle can be a graph

-QO all its own, as at left, or can be part of another graph.

EXERCISE 25-16 In a cycle n vertices long, how many edges are there?
EXAMPLE 25-4 A tree is a connected graph with no cycles. We can draw a
tree by placing one vertex at the top, all vertices connected to that vertex one
level down, all vertices connected to those vertices another level down, and so
on. Clearly no edge can jump over a level, because that would create a cycle.
(Do you see why?) The picture looks like that drawn at right.

EXERCISE 25-17 How many edges are there in a tree with n vertices?
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25.5 Euler Trails

The simplest question related to graph walking is, when is it possible to form a trail which uses all
the edges? This question was actually the first graph-related question ever addressed, by Leonhard
Euler in the 1730’s. A trail of the type we’re looking for is thus called an Euler trail.

EXERCISE 25-18 Draw some graphs and see if you can draw Euler trails. When you can'’t, why
can’t you? When you can, why can you?

The key insight is that except for the starting and ending vertices, the trail you are following
must go into a vertex along one edge and then out of the same vertex along a different edge. Such
a process always uses up two of the edges which emanate from the vertex. We may go through the
same vertex again any number of times, but each time we are eliminating exactly two edges. Thus
each vertex which is not the starting or the ending point has an even number of edges coming out
of it!

The number of edges which come out of a vertex is called the degree of the vertex. We have just
shown that a graph which possesses an Euler trail has at most 2 vertices of odd degree—only the
starting and ending points of the trail are exempted.

We can actually qualify this a little bit more, however, using a method similar to that we used in
looking at the degree of a face. Consider the sum of the degrees of all the vertices of a graph. Since
this sum counts all the edges coming out of each vertex, it counts each edge twice: once for each of
the vertices it connects. Thus the sum of the degrees of all the vertices equals 2E.

Since 2E is obviously even, the sum of the degrees of the vertices must be even! Thus there must
be an even number of vertices with odd degree in any graph. (Do you see why?) We have stated
that a graph with an Euler trail must have at most two vertices of odd degree; but since exactly one
vertex of odd degree is forbidden (since that would be an odd number), our graph must have either
zero or two. The question is, do all graphs with zero or two odd-degree vertices have an Euler trail?

Let’s look at the case of zero vertices of odd degree. When we leave the
starting vertex (which has even degree), there will be an odd number of edges
left there to use. Each time we go through that vertex after that, we will use up
two edges, leaving the number odd, until there is only one edge left. When we
follow that edge in, there will be no edge to take back out, so we had better be
finished with the trail. We must end up where we started. What if we get back
to the starting point before we use all the edges? In this case, there must be some
vertex Q on the trail which has edges left over, as at right. We form a new walk
by backtracking our original trail to Q, then forming a new trail from Q using
all unused vertices and ending back up at Q, then continuing the old trail to the end. We can keep
doing this as long as there are any leftover edges, and so form an Euler trail of the entire graph.

Q

EXERCISE 25-19 The one hole in the proof above is that we need to be sure we can always form a
trail on only unused edges which starts and ends at Q. Prove that we can do so.

EXERCISE 25-20 Examine the case of graphs with two odd vertices. Do they always have Euler %0>
trails? Where must such trails start and end?
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Similar to the Euler trail problem is that of Hamiltonian paths, paths which cross every vertex
exactly once and end up at the start. Hamiltonian cycles, which end up where they started, are of
particular interest. However, this problem turns out to be much harder than the Euler trail problem;
there is no known way to characterize graphs with Hamiltonian cycles easily.

25.6 Colorings

Imagine you work at a mapmaking company. The drawing
person brings in the latest black-and-white print, and you, the col-
orist, must color the map for final publication. The map might look
something like the picture at right. In coloring a map it’s essential
that no two adjacent countries be the same color, or it’s hard to tell
them apart. So the basic problem of the colorist is to assign a color
to each country in such a way that no two countries which share a
boundary are the same color.

So what does this have to do with graph theory? The key step
is realizing that we can replace the map with a graph. (Indeed,
many problems can be converted into graph theory problems in
this way. The advantage? As soon as you have graphs, you have
a great deal of ready-made machinery to bring to bear on your
problem.) Instead of countries, we have vertices; instead of sharing
a boundary, two countries/vertices share a common edge. For
example, the original map would be replaced with the graph above.

EXERCISE 25-21 Determine which vertices of the graph correspond to which countries on the map.

Since colored ink is relatively expensive, it’s the colorist’s job to color a map with as few colors
as possible. Similarly, it is the mathematician’s job to color a graph with as few colors as possible—
coloring every vertex with a different color would be legitimate, but not very interesting! In math,
we thus define the chromatic number x of a graph to be the smallest number of colors needed to
color the vertices so that no two vertices which are connected together share the same color.

EXAMPLE 25-5 1t's easy to make graphs with a high chromatic number: just connect everything
together. For example, suppose we are trying to color K7. We give the first vertex color 1. Then no
other vertex can be color 1, since they are all connected to the first vertex. We thus color the second
vertex color 2. Again, no other vertex can be this color. Proceeding likewise for all the vertices, we
need 7 colors to color the graph. Similarly, we need 1 colors to color K, for any n.

EXERCISE 25-22 Describe all graphs with x = 1.

A particularly interesting class of graphs is those with y = 2. We can draw such
a graph with the vertices of each color in a line; since there may be no connections
between vertices of the same color, all connections must be from one line to the other,
as at right. Graphs of this type are called bipartite.
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A bipartite graph with s vertices of one color and t of the other which contains all
possible edges is denoted by K. For example, K34 is shown at left.

EXERCISE 25-23 Draw Ky in the same way as K4 is drawn above, then draw it with no edges
crossing.

EXERCISE 25-24 Draw Kj 3 in the normal way, then draw it with no edges crossing.

EXERCISE 25-25 How many edges does K33 have? How many vertices? Do these values sat-
isfy (25.1)? What does this say about whether or not it is planar?

EXAMPLE 25-6 1f you tried to draw K3 3 so as to be planar in Exercise 25-24 and failed, don’t worry
too much. It isn’t. How do we prove this? Our first thought is to mimic the simple proof that Ks is
not planar, based on the inequality (25.1). However, you saw in the previous exercise that K33 does
satisfy the inequality (25.1), so this won’t work.

A slight refinement will do the trick. Remember that we proved in Exercise 25-7 that E > 3F
by noting that every face of a graph has at least three edges around it. On the other hand, for
bipartite graphs every face has at least four edges around it! (Prove this to yourself.) Thus we can
write E > 2F. Substituting this into Euler’s formula, we now have E < 2V — 4. Compare this to
equation (25.1). We have improved that inequality for bipartite graphs: if a bipartite graph is to be
planar, its number of edges must be less than 2V — 4 rather than the larger 3V — 6.

The punchline, which you probably saw coming, is that for K33 we have E = 9 and V = 6, values
which do not satisfy E < 2V — 4 (just barely!). Thus K33 is not planar.

EXERCISE 25-26 Prove that K, is not planarif s > 3and ¢t > 3.
EXERCISE 25-27 Prove that Ky is planar for all . (Remember: just satisfying the inequality is NOT
enough!)

EXERCISE 25-28 The girth of a graph is the length of the shortest cycle in the graph. (For example, 5\
the girth of a bipartite graph is at least 4.) Find an analogous inequality to E < 2V — 4 (which we
found for bipartite planar graphs) for planar graphs with girth g.

Problems to Solve for Chapter 25

427. Prove that the sum of the degrees of all the vertices of a graph is equal to twice the total number
of edges.

428. What possible numbers of vertices can a graph have if the graph has 20 edges and all vertices
of the same degree?

429. N players form seven teams, with each pair of teams having one common member and each
player on two teams. How many players are there?

430. What is the smallest number of vertices a graph can have if it has 50 edges?

431. What is the smallest number of vertices a planar graph can have if it has 50 edges?
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432. Draw a planar graph with six vertices, all of degree 3, or prove it is not possible.
433. Show that any planar graph has some vertex whose degree is less than or equal to 5.
434. If a planar graph has V vertices, each with degree 4, and 10 faces, find V.

‘5‘\ 435. Two pyramids with common base A;A2A3A4A5A6A7 and vertices B and C are given. The edges
BA;, CA; (i = 1,...,7), the diagonals of the common base and the segment BC are colored in either

red or blue. Prove that there exists a triangle whose sides are colored in one and the same color.
(Bulgaria 1993)

436. 500 basketball players are divided up into 250 two-person teams for a tournament. On each day

of the tournament, the teams are rearranged such that no two people ever play on the same team
together twice. What is the longest possible such tournament?

the ART of PROBLEM SOLVING: Volume 2 < 283

——the BIG PICTURE

One of the most famous problems in mathematics arose in connection with graph.colormg.
Experimenting with coloring a map of England, a student of Augustus De Morgan, a mnet‘eenth
century mathematician, noticed that it required only four colors to make sure no two adjacent
regions were the same color. The problem became known as the four?color problerp: does any
map in the plane require more than four colors? (Try coming up with a map which requires
more!)

Around 1890 a proof was proposed which gained wide acceptance, showing that fogr colors
always suffice. Ten years later, however, a fatal flaw was found. The proof would still show
that five colors are always enough, but the four-color problem was intact.

As it grew older, the four-color problem attracted the attention of more and more prominent
mathematicians; Hermann Minkowski asserted that he could find a proof if he tried, then later
had to recant. As more people thought about the four-color problem, graph theory matured
from an unserious branch of math to a subject of wide interest. (Today graph theory has
applications from computer science to physics.)

In 1976 Appel and Haken showed that it would suffice to look at a certain class of subprob-
lems, then used a computer to analyze them all. After some hours of computer time, they
declared the problem solved. And while they later had to go back and add a few more cases, it
is now widely accepted that their proof is correct. Such a computer-driven proof leaves a bad
taste in many people’s mouths, though, for two reasons. First, it can’t be checked by a human.
Second, and more important, it is aesthetically not too satisfying. Such a simple, elegant fact;
such a complex, brute-force proof.

Chapter 26 Parting Shots page 284
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Problems to Solve for Chapter 26

437. If Inx* = (Inx)?, find x. (MA® 1991)

438. Given A, a set of 13 (distinct) elements, what fraction of the functions from A to A have a
well-defined inverse function? (MA© 1992)

439. With $1000 a rancher is to buy steers at $25 each and cows at $26 each. If he has no money left
over, and he bought at least one of each animal, how many cows did he buy? (AHSME 1958)

440. If the terms Ina, Inb, Inc, Ind form an arithmetic sequence with common difference 1, then
what type of sequence is a, b, ¢, d? (MA® 1992)
32 +9x+17

E T (ARML 1986)

441. If x is real, compute the maximum integral value of
442. Find the volume of the solid generated by revolving AABC about line I if B
AB =13, BC = 15, and AC = 14. (MA® 1990)

443. A circular disk is divided by 2n equally spaced radii (7 > 0) and one secant
line. What is the maximum number of non-overlapping areas into which the

disk can be divided? (AHSME 1971) A C

444, Let

_5+3V5 (1+V5)"  5-3v5 (1-+5\"
f="7 (2)+ 10 (2)
Find f(n + 1) — f(n — 1) in terms of f(n). (AHSME 1964)

445. Let r be the distance from the origin to a point P with coordinates x and y. Designate the ratio
y/rby s and the ratio x/r by c. What values can s% — ¢ have? (AHSME 1958)

446. Find two factors greater than 1 whose product is 6° + 8* + 274, (Mae 1987

447. If iz ol = z, find all possible z. (Mandelbrot #3)

x—
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448. Given xyz = 1, find the sum

1 " 1 " 1 )
l+x+xy 1+y+yz 1+z+zx

(M&IQ 1992)

449. If P is the product of n quantities in geometric progression, S their sum, and S’ the sum of their
reciprocals, then find P in terms of S, S*, and n. (AHSME 1971)

450. If 2 = —1, find the sum
c0s45° +1ic0s135° + -« + i" cos(45 + 90n)° + - - - + 0 c0s 3645°.

(AHSME 1977)

451. Find the minimum value of /x2 + 32 if 5x + 12y = 60. (AHSME 1961)

452. Find the radius of the smallest circle containing the shown symmetric figure composed
of three unit squares. (AHSME 1972)

453. A man lists the integers from 1 to 7, inclusive. He omits one of the numbers. The average of the
remaining numbers is 18.8. What number did he omit? (MA© 1992)

454. How many triples (a, b, c) of positive integers satisfy the simultaneous equations

ab+bc = 4
ac+bc = 23?

(AHSME 1984)

455. The population of Nosuch Junction at one time was a perfect square. Later, with an increase of
100, the population was one more than a perfect square. Now, with an additional increase of 100, the
population is again a perfect square. What was the original population of the town? (AHSME 1962)

456. In the diagram, AB < AC, AC = BC, and 60° < /B < 90°. Isosceles A Gig
triangles ABC and AB’C’ are congruent. (Mandelbrot #1) M
i. Show that AB’DC is an isosceles triangle. 85 @

ii. Show that ABCC' is a parallelogram.
iii. Prove that AD/AC = DB’/CB'.

iv. Show that a single circle passes through A, B, C, and C'.
v. Show that AB is tangent to this circle.

457. Two perpendicular chords intersect in a circle. The segments of one chord are 3 and 4; the
segments of the other are 6 and 2. What is the diameter of the circle? (AHSME 1957)

458. Prove that given n > 4 points in a plane, no three forming a right triangle and no three of
which are collinear, at least one-fourth of the triangles with vertices among the 1 points are obtuse.
(Mandelbrot #3)
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459. Through the interiors of how many lattice squares does the line segment connecting (0,0) and
(119, 153) pass? (A lattice square is a unit square with lattice points as its vertices.) (Mandelbrot #1)

460. Find a nonzero polynomial P(x) such that xP(x — 1) = (x — 3)P(x).

is a non-zero reducible fraction. (AHSME 1985)

461. Find the least positive integer n for which ; —:2
n

462. For each positive number x, let

(x4 1= (4 ) -2

= e e )

What is the minimum value of f(x)? (AHSME 1979)

463. Let F; represent the ith Fibonacci number. Let F,, Fy, F, and F4 be the sides of a convex
(nondegenerate) quadrilateral, with @ < b < ¢ < d. Find the greatest possible value for 4 — b. (ARML
1983)

464. If A and B are both in [0,27) and A and B satisfy the equations

sinA +sin B

Wik W=

~

cosA + cosB

find cos(A — B). (MA®© 1992)

465. In parallelogram ABCD let E be the midpoint of AB and F on CD be such that CF = 2(FD). If G
is the intersection of EC and BF and [ABCD] = 252, find the area of pentagon AEGFD.

A 466. In the diagram, let ZADM = LACD and LABM = LACB. Prove that BC, AC, and
AD form the sides of a right triangle. (Mandelbrot #2)

B D 467. Prove that if n is an integer greater than 11, then n? —19n + 89 is not a perfect
¢ square. (USAMTS 1)

468. If a set of one or more integers (a1,42,...,4x}, not necessarily distinct, has the property that
Zaia j (the sum of the products of all pairs of integers in the set) is a perfect square, then we will
i#] ; ;

call such a set a square set. We also associate a number b with a square set, where

b=a+a+--+a,+2 [ aa.
i#]
(Mandelbrot #2)

i. Suppose that {a1,a2,...,a4} is a square set, and b is defined as above. Show that the set
{ay,a2,...,an,b) is also a square set.

ii. Let (a1,a2,...,an) and b be as in the above problem. Prove that {ay,...,a,_y,b,aj41,...,a,) is
also a square set. Thus, show that if any element of the original set is replaced by b, the new set is
also a square set.
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469. Find a polynomial F(x) with leading coefficient 1 such that F(cosa) = cos7a for any angle a.
What is the coefficient of the x? term of F? (MA© 1992)

470. Three different integers are chosen between 1 and 13 inclusive. What is the probability that the
sum of the three integers is divisible by 4?7 (MA® 1992)

471. Prove that there is no set of rational numbers (x, y, z, ) such that
(x+y V2P + @+t V2P =5+4V2.

(M&IQ 1992)

472. In base R; the expanded fraction F; becomes .373737... ., and the expanded fractipn F; becomes
.737373.... Inbase R; fraction F;, when expanded, becomes .252525.. ..., while the fraction F2 becomes
.525252. ... What is the sum of R; and R; in base 10? (AHSME 1966)

473. One of the sides of a triangle is divided into segments of 6 and 8 units by the point of tangency
of the inscribed circle. If the radius of the incircle is 4, then what is the length of the shortest side of
the triangle? (AHSME 1953)

474. In AABC, AB = 3, AC = 6, and BC = 7. Let AX be the bisector of ZBAC and A y
Y be the foot of the perpendicular from X to AC. Determine XY. (Mandelbrot #2)

475. What is the smallest integer multiple of 49 whose digits are all the same? B X
(USAMTS 1)

476. A subset of the integers 1, 2,.. ., 100 has the property that none of its members is 3 times another.
What is the largest number of members such a subset can have? (AHSME 1990)

477. Show that x192 — x19%0 4 (2n — 1)x® —x = 2 has no solutions in positive integers (x, y) whenn = 1 §~\

or n = 2. (M&IQ 1992)
478. A line segment is divided so that the lesser part s to the greater part as the greater part is to the
whole. If R is the ratio of the lesser part to the greater part, then find

R [REart] oo

(AHSME 1974)

479. Points Ay, By, and C; are respectively the feet of the bisectors of angles .CAB, LABC, and /BCA
of AABC. Prove that if ZABC = 120°, then ZA;1B1Cy = 90°. (M&IQ 1991)

480. How many integers from 1 to 1992 inclusive have base three representations that do not contain
the digit 2? (Mandelbrot #2)

481. Evaluate cos % cos & cos & cos 4% cos 7 cos . (MA© 1992)

482. The numbers from 1 to 50 are printed on cards. The cards are shuffled and then laid out face up
in 5 rows of 10 cards each. The cards in each row are rearranged to make them increase from left to
right. The cards in each column are then rearranged to make them increase from top to bottom. In
the final arrangement, do the cards in the rows still increase from left to right? (Canada 1980)
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A 483. In the figure, CD, AE, and BF are one-third of their respective sides.
E It follows that AX : XY : YD = 3 : 3 : 1, and similarly for lines BE and CF.

Find the area of XYZ in terms of the area of AABC. (AHSME 1952)

F 484. In triangle ABC, BD is a median. CF intersects BD at E so that BE = ED.
c L Point F is on AB. If BF = 5, find BA. (AHSME 1959)
B
485. Triangle ABC has a right angle at C, AC = 3 and BC = 4. Triangle ABD has a right D
angle at A and AD = 12. The line through D parallel to AC meets CB extended at E.
Find DE/DB. (AHSME 1991)

486. Let a, b, and c be the sides of triangle ABC. If a2, b?, and c? are the roots of the
equation x® = Px? + Qx — R = 0 (where P, Q, and R are constants), express € B E

cosA cosB cosC
+ +
a b c

in terms of one or more of the coefficients P, Q, and R. (ARML 1983)
487. Prove that for any positive integers m and n the equality
(5+3V2)" = (3+5V2)"
is impossible. (M&IQ 1992)
488. Find all ordered pairs of non-negative integers (b, c) such that
lim (i) =3,
n=e \ Uy
if ug = u; =1 and u, = buy_1 + cup-2. (Mandelbrot #1)

489. Show that every positive even integer n has a base three representation n = 2 3% +- - - +-2;3! +(3°
where each a; is 0, 2, or 4. (Mandelbrot #2)

490. How many polynomial functions f of degree > 1 satisfy

£62) = [f)” = £(f@)?
(AHSME 1987)

491. Show that every integer n has base three representation n = ;3% + -+ + 23! + 2y3° where each
a; is —1, 1, or 3. (Mandelbrot #2)

492. ABCDE is a regular pentagon. AP, AQ, and AR are the perpendiculars A
dropped from A onto CD, CB extended, and DE extended, respectively. Let Obe R ( \ Q
the center of the pentagon. If OP = 1, then find AO + AQ + AR. (AHSME 1986) E B

493. If x> - x+a evenly divides the polynomial x8 +5x° +13x* +20x2 +36, determine
the positive integer a. (Mandelbrot #1) D P C

494. On a large, flat field, n people (1 > 1) are positioned so that for each person the distances to all
the other people are different. Each person holds a water pistol and at a given signal fires and hits
the person who is closest. When 7 is odd show that there is at least one person left dry. (Canada 1987)
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495. Find the greatest integer less than (V7 + V5)6. (Mandelbrot #2) S—_

496. In triangle ABC, AB = 5, AC = 6, and BC = 7. If point X is chosen on BC so that the sum of the
areas of the circumcircles of triangles AXB and AXC is minimized, then determine BX. (Mandelbrot #2)

497. Find the largest value of y/x for pairs of real numbers (x, y) which satisfy (x — 3P+ (y-3)=6
(AHSME 1984)

498. In the figure, AABC has /A = 45° and /B = 30°. A line DE, with D on C
AB and ZADE = 60°, divides AABC into two pieces of equal area. (Note: the E
figure may not be accurate; perhaps E is on CB instead of AC.) Find the ratio  , - B

AD/AB. (AHSME 1987)

499. ABC is a triangle and X, Y, Z are points on the sides BC, CA, AB (respectively) such .that the
lines AX, BY, CZ are concurrent at D, an interior point of ABC. Prove that if two of the quadrilaterals
DYAZ, DZBX, DXCY are circumscriptible, then so is the third one. (IMO 1986)

500. In an isosceles triangle, the altitudes intersect on the inscribed circle. Compute the cosine of the
vertex angle. (ARML 1983)

f7T 7

501. Find the number of real solutions (x, y, z, w) of the simultaneous equations

17
2y=x+1—7, Zz=y+E, 2w=z+z, 2xx=w+ —.
X y b w

(AHSME 1986)

502. Given 0 < xg < 1, let
= ZX',,-] if?-rn—) <1
WY P i=1 if2x,gq 21

for all integers n > 0. For how many xj is it true that xo = x5? (AHSME 1993)
503. A magical set is a group of three or more positive integers, not necessarily distinct, such that

each number in the set exactly divides the sum of the remaining numbers. We also require that these
numbers have no common divisor except 1. (Mandelbrot #1)

i. Prove that a set is magical if and only if each element in the set divides the sum of all the
elements.

ii. Show that the set {1,1,2,22,23,...,2") is magical for all n > 1.

iii. A proper divisor of a number # is a positive integer less than n which divides n. A perfect
number is a number which equals the sum of all its proper divisors. Show thatall the proper divisors
of a perfect number form a magical set.

iv. Find all magical sets with exactly three numbers.

v. Find all magical sets with four numbers whose smallest elements are 1 and 3, i.e. of the form
{1,3,m,n} with m,n > 3.

vi. Prove that given any magical set, one can include an additional number in the set so that
this new set is magical.

504. A particle moves from (0,0) to (1, n) directed by a fair coin. For each head it moves one step \
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east and for each tail it moves one step north. At (n,y), y < n, it stays there if heads comes up and
at (x, n), x < n, it stays there if tails comes up. Let k be a fixed positive integer. Find the probability
that the particle needs exactly 2n + k tosses to reach (1, n). (IMO 1986)

/

505. Given any 7 real numbers, prove that there are two of them, say x and y, such that

xX-y 1
< < —.

s 1+xy~ 43
(Canada 1984)
506. In acute triangle ABC, we are given AD L BC, DF L AB, and DE L AC. A
The circumradius of a triangle is the radius of the circle circumscribed about the E E
triangle. Find /A if the product of the circumradii of AABC and AAEF is the area B c
of AABC. (Mandelbrot #1) D

507. An “unfair” coin has a 2/3 probability of turning up heads. If this coin is tossed 50 times, what
is the probability that the total number of heads is even? (AHSME 1992)

508. The points A, B, C are in this order on the line /, and AB = 4(BC). M is a variable point on the
perpendicular to / through C. Let MX and MY be tangents to the circle with center A and radius AB.
Determine the locus of the orthocenter of the triangle MXY. (IMO 1985)

rrro7

509. A set of regular polygons of side 1 is chosen such that the polygons can be made to fill
the 360 degree angle about a point, as the hexagon, two squares, and triangle do at right.
In how many ways can the polygons be chosen? The order of placement is irrelevant.
(Mandelbrot #3)
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